
Lecture-16 : Continuous Time Markov Chains

1 Markov Process
Definition 1.1. For any stochastic process X : Ω→XR+ indexed by positive reals and taking values in X⊆R, the
history of the process until time t > 0 by is the collection of all the events that can be determined by the realization
of the process X until time t. We denote the process history by

Ft , σ (Xu, u 6 t) .

Definition 1.2. A real-valued stochastic process X : Ω→ XR+ indexed by positive reals, and with state space
X⊆R, is a Markov process if it satisfies the Markov property. That is for any Borel measurable set A ∈ B(R),
the distribution of the future states conditioned on the present, is independent of the past, and

P({Xt+s ∈ A}|Fs) = P({Xt+s ∈ A}|σ(Xs)), for all s, t > 0.

A Markov process with countable state space X is referred to as continuous time Markov chain (CTMC).

Remark 1. The Markov property for the CTMCs can be interpreted as follows. For all times 0 < t1 < · · ·< tm < t
and states x1, . . . ,xm,y ∈ X, we have

P({Xt = y}
∣∣ ∩m

k=1
{

Xtk = xk
}
) = P({Xt = y}

∣∣ {Xtm = xm}).

Example 1.3 (Counting process). Any simple counting process N : Ω→Z
R+
+ with independent increments

is a CTMC. This implies any (possibly time-inhomogeneous) Poisson process is a CTMC. Countability of
the state space is clear from the definition of the counting process. For Markov property, we observe that for
t > s, the increment Nt −Ns is independent of Fs. Hence for the natural filtration F•,

P({Nt = j}|Fs) = ∑
i∈Z+

P({Nt = j,Ns = i}|Fs) = ∑
i∈Z+

1{Ns=i}P{Nt −Ns = j− i}= P({Nt = j}|σ(Ns)).

1.1 Transition probability kernel
Definition 1.4. We define the transition probability from state x at time s to state y at time t + s as

Pxy(s,s+ t) , P({Xs+t = y}
∣∣ {Xs = x}).

Definition 1.5. The Markov process has homogeneous transitions for all states x,y ∈ X and all times s, t > 0, if

Pxy(t) , Pxy(0, t) = Pxy(s,s+ t).

We denote the transition probability kernel/function at time t by P(t) = (Pxy(t) : x,y ∈ X).

Remark 2. We will mainly be interested in continuous time Markov chains with homogeneous jump transition
probabilities. We will assume that the sample path of the process X is right continuous with left limits at each time
t ∈R+.

Lemma 1.6 (stochasticity). Transition kernel P : R+→ [0,1]X×X at each time t ∈R+ is a stochastic matrix.

Proof. From the countable partition of the state space X, we get 1 = P({X(t) ∈ X}|{X(0) = x}) = ∑y∈X Pxy(t)
for any x ∈ X.

Lemma 1.7 (semigroup). Transition kernel satisfies the semigroup property, i.e. P(s+ t) = P(s)P(t), s, t ∈R+.
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Proof. From the Markov property and homogeneity of CTMC, and law of total probability, we can write the
(x,y)th entry of kernel matrix P(s+ t) as

Pxy(s+ t) = Pxy(0,s+ t) = ∑
z∈X

Pxz(0,s)Pzy(s,s+ t) = ∑
z∈X

Pxz(0,s)Pzy(0, t) = [P(s)P(t)]xy.

Result follows since x,y ∈ X were chosen arbitrarily.

Lemma 1.8 (continuity). Transition kernel P : R+ → [0,1]X×X for a homogeneous CTMC X : Ω→ XR+ is
a continuous function of time t ∈ R+, such that limt↓0 P(t) = I, the identity matrix. That is, Pxx(0) = 1 and
Pxy(0) = 0 for all y 6= x ∈ X.

Proof. From the continuity of probability functions and right continuity of the process at time t = 0, we get
that limt↓0 P(t) = I. Using the semigroup property of the transition kernel, we can write P(t + h)− P(t) =
P(t)(P(h)− I). The continuity of transition kernel at time t = 0, and boundedness of P(t) implies continuity of
P(t) at all times t > 0.

Lemma 1.9 (continuity). Transition kernel P for a homogeneous CTMC is continuous in time t ∈R+, limt↓0 P(t) =
I.

Proof. From the semi-group property of probability kernel, we have P(t + h)−P(t) = P(t)(P(h)− I). Since
probability is a bounded function, it suffices to show continuity at t = 0. The continuity at t = 0 follows from the
continuity of probability functions and alternate characterization of homogeneous CTMC.

Lemma 1.10 (continuity). Transition kernel P for a homogeneous CTMC is continuous in time t ∈R+, limt↓0 P(t) =
I.

Proof. From the semi-group property of probability kernel, we have P(t + h)−P(t) = P(t)(P(h)− I). Since
probability is a bounded function, it suffices to show continuity at t = 0. The continuity at t = 0 follows from the
continuity of probability functions and alternate characterization of homogeneous CTMC.

Remark 3. Since each entry of transition kernel P(t) is a probability, semigroup property leads to characterization
of the kernel P(t) completely.

Definition 1.11 (Exponentiation of a matrix). For a matrix A with spectral radius less than unity, we can define

eA , I + ∑
n∈N

An

n!
.

Lemma 1.12. For a homogeneous CTMC, we can write the transition kernel P(t) = etQ in terms of a constant
matrix eQ , P(1).

Proof. This follows from the semigroup property and the continuity of transition kernel P(t). In particular, we
notice that P(n) = P(1)n and P( 1

m ) = P(1)
1
m for all m,n∈N. Since, any rational number q∈Q can be expressed

as a ratio of integers with no common divisor, we get

P(q) = P(1)q, q ∈Q.

Since the rationals are dense in reals and P is continuous function, it follows that P(t) = P(1)t for all t ∈R and
the result follows from definition of eQ = P(1).

Proposition 1.13. For a time-homogeneous CTMC X : Ω→ XR+ , with transition kernel P, for all times 0 < t1 <
· · ·< tm and states x0,x1, . . . ,xm ∈ X, we have

P(∩m
k=1

{
Xtk = xk

}
|{X0 = x0}) = Px0x1(t1)Px1x2(t2− t1) . . .Pxm−1xm(tm− tm−1).

Corollary 1.14. All finite dimensional distributions of the CTMC X : Ω→ XR+ is governed by the initial distri-
bution.

Proof. Let ν0 be the initial distribution of the CTMC X , such that ν0(x0) = P{X0 = x0} for each x0 ∈ X. For all
finite index sets F ⊂R+, |F |= m and states (x j ∈ X : j ∈ [m]), we have

P(∩t j∈F
{

Xt j = x j
}
) = ∑

x0∈X
ν0(x0)Px0x1(t1) . . .Pxm−1xm(tm− tm−1).
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1.2 Excess time in a state
Definition 1.15. From the definition of excess time as the time until next transition, we can write the excess time
at time t ∈R+ for the CTMC X as

Yt , inf{s > 0 : Xt+s 6= Xt} .

Remark 4. We observe that Yt is the excess remaining time at time t, the process spends in state Xt . That is,
Xt+Yt 6= Xt .

For a homogeneous CTMC X , the distribution of excess time Yt conditioned on the current state Xt , doesn’t
depend on time t. Hence, we can define the following conditional complementary distribution of excess time as

F̄x(u) , P({Yt > u}|{Xt = x}).

Lemma 1.16. For a homogeneous CTMC X, there exists a positive sequence ν : X→R+, such that

F̄x(u) , P({Yt > u}|{Xt = x}) = e−uνx , x ∈ X.

Proof. We fix a state x ∈ X, and observe that the function F̄x ∈ [0,1] is non-negative, non-increasing, and right-
continuous in u. Using the Markov property and the time-homogeneity, we can show that F̄x satisfies the semigroup
property. In particular,

F̄x(u+ v) = P({Yt > u+ v}|{Xt = x}) = P({Yt > u,Xt+u = x,Yt+u > v}|{Xt = x}) = F̄x(u)F̄x(v).

The only continuous function F̄x ∈ [0,1] that satisfies semigroup property is an exponential function with a negative
exponent.

Definition 1.17. For a CTMC X , a state x ∈ X is called

(i) absorbing if νx = 0,

(ii) stable if νx ∈ (0,∞), and

(iii) instantaneous if νx = ∞.

Remark 5. The sojourn time in an absorbing state is ∞, zero in an instantaneous state, and almost surely finite and
non-zero in a stable state.

Definition 1.18. A homogeneous CTMC with no instantaneous states is called a pure jump CTMC. A pure jump
CTMC with

(i) all stable states and infx∈X νx > ν > 0 is called stable, and

(ii) supx∈X νx 6 ν < ∞ is called regular.

We will focus on pure jump CTMCs only.

Example 1.19 (Poisson process). Consider the counting process N : Ω→Z
R+
+ for a Poisson point process

with homogeneous rate λ . Using the stationary independent increment property, we have for all u > 0

F̄i(u) = P({Nt+u = i}|{Nt = i}) = P{Nt+u−Nt = 0}= P{Yt > u}= e−λu.

A Poisson process with finite non-zero rate is a pure-jump CTMC with stable states.

1.3 Strong Markov property
Consider a probability space (Ω,F,P) and a continuous filtration F• = (Ft ⊆ F : t ∈R+) defined on this space.

Definition 1.20. A random variable τ is a stopping time if {τ 6 t} ∈ Ft for each t ∈ R+. That is, a random
variable τ is a stopping time if the event {τ 6 t} can be determined completely by the history Ft = σ(Xu, u 6 t).
An almost surely finite stopping time τ is called proper.

Definition 1.21. A stochastic process X : Ω→XR+ has strong Markov property if for any proper stopping time
τ , and set A ∈B(X), we have

P({Xτ+s ∈ A}
∣∣ Fτ ) = P({Xτ+s ∈ A}

∣∣ σ(Xτ )).
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Lemma 1.22. A continuous time Markov chain X has the strong Markov property.

Proof. It follows from the right continuity of the CTMC process, and the fact that the map t 7→E[ f (Xs+t)
∣∣ σ(Xt)]

is right-continuous for any bounded continuous function f : X→ R. To see the right continuity of the map, we
observe that

E[ f (Xs+t)
∣∣ σ(Xt)] = ∑

x∈X
1{Xt=x} ∑

y∈X
Pxy(s) f (y).

Right-continuity of the map follows from the right continuity of the sample paths of process X , right-continuity
and boundedness of the kernel function, and boundedness and continuity of f , and bounded convergence theorem.

Theorem 1.23. A pure jump CTMC X satisfies the following strong Markov property. For any proper stopping
time τ , finite m ∈N, finite times 0 < t1 < · · ·< tm, any event H ∈ Fτ and states x0,x1, . . . ,xm ∈ X, we have

P(∩m
k=1

{
Xtk+τ = xk

} ∣∣ H ∩{Xτ = x0}) = P(∩m
k=1

{
Xtk = xk

} ∣∣ {X0 = x0}).

Remark 6. In particular for a pure-jump time-homogeneous CTMC X , proper stopping time τ , and event H ∈ Fτ ,
we have

P({Xτ+s = y}|{Xτ = x}∩H) = Pxy(s).
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