Lecture-16 : Continuous Time Markov Chains

1 Markov Process

Definition 1.1. For any stochastic process X : () — X®+ indexed by positive reals and taking values in XX C RR, the
history of the process until time # > 0 by is the collection of all the events that can be determined by the realization
of the process X until time . We denote the process history by

?féo-(Xu,Mgt)

Definition 1.2. A real-valued stochastic process X : Q) — XR+ indexed by positive reals, and with state space
X C R, is a Markov process if it satisfies the Markov property. That is for any Borel measurable set A € B(IR),
the distribution of the future states conditioned on the present, is independent of the past, and

P({Xi+s € A}|Fs) = P({Xi45s €A} |0 (X)), forall 5,7 > 0.
A Markov process with countable state space X is referred to as continuous time Markov chain (CTMC).

Remark 1. The Markov property for the CTMCs can be interpreted as follows. For all times 0 <1 < --- <t, <t
and states xi,...,x,,y € X, we have

P({X, =y} ‘ ey {X, =x}) =P{X =y} | {Xi,, = xm}).

Example 1.3 (Counting process). Any simple counting process N : () — ZE+ with independent increments
is a CTMC. This implies any (possibly time-inhomogeneous) Poisson process is a CTMC. Countability of
the state space is clear from the definition of the counting process. For Markov property, we observe that for
t > s, the increment N, — Ny is independent of F;. Hence for the natural filtration F,,

P({N: = j}|Fs) = Y, PN = j,Ns = i}|Fs) = ) Lin—yP{N; —N; = j—i} = P({N; = j} |0 (Ns)).
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1.1 Transition probability kernel
Definition 1.4. We define the transition probability from state x at time s to state y at time 7 + s as
ny(s,s—i-t) £ P({Xy1s =y} | {X; =x}).
Definition 1.5. The Markov process has homogeneous transitions for all states x,y € X and all times s,7 > 0, if
Py (1) £ Py(0,1) = Pyy(s,s +1).
We denote the transition probability kernel/function at time ¢ by P(t) = (Py(¢) : x,y € X).

Remark 2. We will mainly be interested in continuous time Markov chains with homogeneous jump transition
probabilities. We will assume that the sample path of the process X is right continuous with left limits at each time
teR;.

Lemma 1.6 (stochasticity). Transition kernel P: Ry — [0,1]X*% at each time t € R, is a stochastic matrix.

Proof. From the countable partition of the state space X, we get 1 = P({X (1) € X} [{X(0) =x}) = ¥ yex Py (t)
for any x € X. O

Lemma 1.7 (semigroup). Transition kernel satisfies the semigroup property, i.e. P(s+1) = P(s)P(t), s,t € Ry.



Proof. From the Markov property and homogeneity of CTMC, and law of total probability, we can write the
(x,y)th entry of kernel matrix P(s+1) as

Py(s+1) =Py (0,5+1) = %sz(o,s)gy(s,sﬂ) = %sz(o,s)sz(o,t) = [P(s)P(t)]y-

Result follows since x,y € X were chosen arbitrarily. O

Lemma 1.8 (continuity). Transition kernel P: Ry — [0, l]ch for a homogeneous CTMC X : Q) — XR+ is
a continuous function of time t € Ry, such that lim, o P(t) = I, the identity matrix. That is, P(0) = 1 and
Py (0) =0 forally #x e X.

Proof. From the continuity of probability functions and right continuity of the process at time t = 0, we get
that lim, o P(¢) = I. Using the semigroup property of the transition kernel, we can write P(r 4+ h) — P(1) =
P(t)(P(h) —I). The continuity of transition kernel at time = 0, and boundedness of P(¢) implies continuity of
P(r) at all times 7 > 0. O

Lemma 1.9 (continuity). Transition kernel P for a homogeneous CTMC is continuous in timet € R, lim, o P(t) =
L

Proof. From the semi-group property of probability kernel, we have P(t + h) — P(¢) = P(t)(P(h) —I). Since
probability is a bounded function, it suffices to show continuity at # = 0. The continuity at t = O follows from the
continuity of probability functions and alternate characterization of homogeneous CTMC. ]

Lemma 1.10 (continuity). Transition kernel P for a homogeneous CTMC is continuous in time t € R4, lim, o P(t) =
L

Proof. From the semi-group property of probability kernel, we have P(t +h) — P(t) = P(t)(P(h) —I). Since
probability is a bounded function, it suffices to show continuity at 7 = 0. The continuity at 7 = 0 follows from the
continuity of probability functions and alternate characterization of homogeneous CTMC. ]

Remark 3. Since each entry of transition kernel P(¢) is a probability, semigroup property leads to characterization
of the kernel P(t) completely.

Definition 1.11 (Exponentiation of a matrix). For a matrix A with spectral radius less than unity, we can define
A}’l
AL+ Y —.
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Lemma 1.12. For a homogeneous CTMC, we can write the transition kernel P(t) = €' in terms of a constant
matrix ¢ £ P(1).

Proof. This follows from the semigroup property and the continuity of transition kernel P(¢). In particular, we

notice that P(n) = P(1)" and P(1) = P(l)% for all m,n € IN. Since, any rational number ¢ € Q can be expressed
as a ratio of integers with no common divisor, we get

P(q)=P(1)", q€Q.

Since the rationals are dense in reals and P is continuous function, it follows that P(t) = P(1)’ for all € R and
the result follows from definition of € = P(1). O

Proposition 1.13. For a time-homogeneous CTMC X : Q0 — X®+, with transition kernel P, for all times 0 < t; <
-+« < t, and states xo,X1,...,xXm € X, we have

P(ﬂzlzl {th = xk} ‘ {XO = x()}) = Pxo)q (tl)lexz (t2 —ll) .. 'meflxm (l‘m —l‘m_l).

Corollary 1.14. All finite dimensional distributions of the CTMC X : Q) — XR+ is governed by the initial distri-
bution.

Proof. Let vy be the initial distribution of the CTMC X, such that vy(xo) = P{Xo = xo} for each xo € X. For all
finite index sets F C R, |F| = m and states (x; € X : j € [m]), we have

P(Nver {Xi; =x;}) = Y, Vo(x0)Pupx, (11) -+ Py (fm — 1)
xpeX



1.2 Excess time in a state

Definition 1.15. From the definition of excess time as the time until next transition, we can write the excess time
at time ¢t € IR for the CTMC X as
Y, 2inf{s>0: X1y # X, }.

Remark 4. We observe that Y; is the excess remaining time at time ¢, the process spends in state X;. That is,
Xivy, # X

For a homogeneous CTMC X, the distribution of excess time ¥; conditioned on the current state X;, doesn’t
depend on time . Hence, we can define the following conditional complementary distribution of excess time as

Fe(u) £ P({Y, > u} [ {X, = x}).
Lemma 1.16. For a homogeneous CTMC X, there exists a positive sequence v : X — R, such that
F(uw) 2 P{Y, >u}|{X, =x})=e ™, xeX.

Proof. We fix a state x € X, and observe that the function £ € [0, 1] is non-negative, non-increasing, and right-
continuous in #. Using the Markov property and the time-homogeneity, we can show that F satisfies the semigroup
property. In particular,

Felu+v)=P{Y, >u+v}|{X, =x}) =P{Y, > u,Xoqu = %Y1 > v} [{X, = x}) = E(u)E:(v).

The only continuous function £, € [0, 1] that satisfies semigroup property is an exponential function with a negative
exponent. O

Definition 1.17. For a CTMC X, a state x € X is called
(i) absorbing if v, =0,
(ii) stable if v, € (0,0), and

(iii) instantaneous if v, = oo,

Remark 5. The sojourn time in an absorbing state is oo, zero in an instantaneous state, and almost surely finite and
non-zero in a stable state.

Definition 1.18. A homogeneous CTMC with no instantaneous states is called a pure jump CTMC. A pure jump
CTMC with

(i) all stable states and inf,coc v, = v > 0 is called stable, and
(i) sup,cy Vx <V < oo is called regular.

We will focus on pure jump CTMCs only.

Example 1.19 (Poisson process). Consider the counting process N : () — ZE* for a Poisson point process
with homogeneous rate A. Using the stationary independent increment property, we have for all u > 0

Fi(u) = P({Niyu = i} | {N: = i}) = P{Nizu— N: = 0} = P{¥, > u} = e ™.

A Poisson process with finite non-zero rate is a pure-jump CTMC with stable states.

1.3 Strong Markov property
Consider a probability space (), F,P) and a continuous filtration F, = (F, C F : 1 € Ry ) defined on this space.

Definition 1.20. A random variable 7 is a stopping time if {7t <t} € F, for each t € R;. That is, a random
variable 7 is a stopping time if the event {7 <} can be determined completely by the history F; = 6(X,,, u < 1t).
An almost surely finite stopping time 7 is called proper.

Definition 1.21. A stochastic process X : Q) — X®+ has strong Markov property if for any proper stopping time
7, and set A € B(X), we have

P({Xets €A} | F2) = P({Xets € A} | 0(X2)).



Lemma 1.22. A continuous time Markov chain X has the strong Markov property.

Proof. Tt follows from the right continuity of the CTMC process, and the fact that the map t — E[f(Xs1) | /(X;)]
is right-continuous for any bounded continuous function f : X — IR. To see the right continuity of the map, we

observe that
]E[f(Xs-H) | G<X1)] = Z ]l{X,:x} Z ny(s)f(y)'
xeX yeX

Right-continuity of the map follows from the right continuity of the sample paths of process X, right-continuity
and boundedness of the kernel function, and boundedness and continuity of f, and bounded convergence theorem.
O

Theorem 1.23. A pure jump CTMC X satisfies the following strong Markov property. For any proper stopping
time 7T, finite m € N, finite times 0 < t] < --- < t,,, any event H € F and states xy,x1,...,xn € X, we have

PNy {Xpe = x} | HN{Xe =x0}) = P(O_; { X, = x} | {X0 =x0}).

Remark 6. In particular for a pure-jump time-homogeneous CTMC X, proper stopping time 7, and event H € I,
we have

P({Xeys =y} {Xe = x} NH) = Py (s).
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