
Lecture-18: Markov Processes: Stationarity

1 Generator Matrix
From Lemma ?? for a homogeneous CTMC X : Ω→XR+ , we can write the probability transition kernel function
P(t) = etQ, where eQ = P(1). The matrix Q∈RX×X is called the generator matrix for the homogeneous CTMC
X . From the Definition ?? for the exponentiation of matrix, this implies that

P(t) = I + ∑
n∈N

tn

n!
Qn, t ∈R+. (1)

This relation implies that the probability transition kernel can be written in terms of this fundamental generator
matrix Q. On first glance, this relation doesn’t provide much insight into the characteristics of the generator
matrix. We will formally define generator matrix below, and relate this matrix to the jump transition probability
matrix p ∈ [0,1]X×X of the embedded Markov chain Z : Ω→ XZ+ , and transition rate sequence ν : X→R+.

Definition 1.1 (Generator matrix). For a homogeneous continuous time Markov chain X : Ω → XR+ with
transition kernel function P : R+→ [0,1]X×X, the generator matrix Q ∈RX×X is defined as the following limit
when it exists

Q , lim
t↓0

P(t)− I
t

.

Remark 1. From Eq. (1), it is clear that the generator matrix is the limit defined above.

Theorem 1.2. For a homogeneous CTMC X : Ω→ XR+ , the generator matrix exists and is defined in terms of
sojourn time transition rates ν ∈RX

+ , and jump transition matrix p ∈ [0,1]X×X as

Qxx = −νx, Qxy = νx pxy.

Proof. Consider a fixed time t ∈R+ and states x,y ∈ X. We can expand the (x,y)th entry of transition matrix in
terms of disjoint events {Nt = n} as

Pxy(t) = Px {Xt = y}= ∑
n∈Z+

Px {Xt = y,Nt = n} .

We can write the upper and lower bound the transition probability Pxy(t) as

1

∑
n=0

Px {Xt = y,Nt = n}6 Pxy(t) 6
1

∑
n=0

Px {Xt = y,Nt = n}+P{Nt > 2} .

Since Ixy = 1{x 6=y}, we can write the probabilities in terms of identity operator I as

Px {Xt = y,Nt = 0}= Ixye−νxt , Px {Xt = y,Nt = 1}= (1− Ixy)pxy

∫ t

0
νxe−νy(t−u)e−νxudu.

Since {Nt > 2} is of order o(t) for small t, we can write

Pxy(t)− Ixy

t
= −νxIxy

(
1− e−νxt

νxt

)
+νx pxy

(e−νyt − e−νxt)

(νx−νy)t
(1− Ixy)+ o(t).

Taking limit as t ↓ 0, we get the result.

Corollary 1.3. For each state x ∈ X, the generator matrix Q ∈RX×X for a homogeneous CTMC satisfies

0 6−Qxx < ∞, 0 6 Qxy < ∞, ∑
y∈X

Qxy = 0.
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Remark 2. From the semigroup property of probability kernel function and definition of generator matrix, we get
the backward equation

dP(t)
dt

= lim
s↓0

P(s+ t)−P(t)
s

= lim
s↓0

(P(s)− I)
s

P(t) = QP(t), t ∈R+.

Similarly, we can also get the forward equation

dP(t)
dt

= lim
s↓0

P(s+ t)−P(t)
s

= P(t) lim
s↓0

(P(s)− I)
s

= P(t)Q, t ∈R+.

Both these results need a formal justification of exchange of limits and summation, and we next present a formal
proof for these two equations.

Theorem 1.4 (backward equation). For a homogeneous CTMC X : Ω→ XR+ with transition kernel function
P : R+→ [0,1]X×X and generator matrix Q ∈RX×X, we have

dP(t)
dt

= QP(t), t ∈R+.

Proof. Fix states x,y ∈ X and we consider the liminf and limsup of (x,y)th term of (P(s)−I)
s P(t). For any finite

subset F ⊆ X containing x, we obtain

liminf
s↓0 ∑

z∈X

(Pxz(s)− Ixz)

s
Pzy(t) > ∑

z∈F
liminf

s↓0

(Pxz(s)− Ixz)

s
Pzy(t) = ∑

z∈F
QxzPzy(t).

The above inequality holds for any finite set F ⊆ X, and thus taking supremum over increasing sets F , we get the
lower bound.

For the upper bound, we observe for any finite subset F ⊆ X containing state x, we have

limsup
s↓0

∑
z∈X

(Pxz(s)− Ixz)

s
Pzy(t)6 limsup

s↓0

(
∑
z∈F

(Pxz(s)− Ixz)

s
Pzy(t)−∑

z∈F

(Pxz(s)− Ixz)

s

)
= ∑

z∈F
QxzPzy(t)−∑

z∈F
Qxz.

The above inequality holds for any finite set F ⊆X, and thus taking infimum over increasing sets F and recognizing
that ∑z∈X Qxz = 0, we get the upper bound.

Theorem 1.5 (forward equation). For a homogeneous CTMC X : Ω → XR+ with transition kernel function
P : R+→ [0,1]X×X and generator matrix Q ∈RX×X, we have

dP(t)
dt

= P(t)Q, t ∈R+.

Proof. Fix states x,y ∈ X and we consider the liminf and limsup of (x,y)th term of P(t) (P(s)−I)
s . We take a finite

set F ⊆ X containing state y, to obtain the lower bound

liminf
s↓0 ∑

z∈X
Pxz(t)

(Pzy(s)− Izy)

s
> ∑

z∈F
liminf

s↓0
Pxz(t)

(Pzy(s)− Izy)

s
> ∑

z∈F
Pxz(t)Qzy.

By taking limiting value for increasing sequence of finite sets F ⊆ X, we obtain the lower bound. To obtain the
upper bound, we observe for any finite subset F ⊆ X containing state y, we have

limsup
s↓0

∑
z∈X

Pxz(t)
(Pzy(s)− Izy)

s
6 limsup

s↓0

(
∑
z∈F

Pxz(t)
(Pzy(s)− Izy)

s
+ ∑

z/∈F

Pzy(s)
s

)
= ∑

z∈F
Pxz(t)Qzy + ∑

z/∈F
Qzy.

The second equality follows from monotone convergence theorem. Taking infimum over increasing sets F and
from the fact that ∑y∈X\{x} pxy = 1, we get the upper bound.

Remark 3. Recall that for a homogeneous discrete time Markov chain with one-step transition probability matrix
P, we can write the n-step transition probability matrix P(n) = Pn. That is, for any given stochastic matrix P, we
can construct a discrete time Marko chain. We can generalize this notion to homogeneous continuous time Markov
chains as well. Given a matrix Q∈RX×X that satisfies the properties of a generator matrix given in Corollary 1.3,
we can construct a homogeneous continuous time Markov chain X : Ω→ XR+ by finding its transition kernel
P : R+→ [0,1]X×X, by defining P(t), etQ for all t ∈R+. We observe that P(1) = eQ and we have P(t) = P(1)t

for all t ∈ R+. We need to show that such a defined function is indeed a probability transition kernel. We will
first show that such a function P satisfies some of the properties of the transition kernel, and then show that P(t)
is transition matrix at all times t ∈R+.
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Theorem 1.6. Let Q ∈RX×X be a matrix that satisfies the properties of generator matrix given in Corollary 1.3.
We define a function P : R+ → RX×X

+ by P(t) , etQ for all t ∈ R+. Then the function P satisfies the following
properties.

1. P has the semigroup property, i.e. P(s+ t) = P(s)P(t) for all s, t ∈R+.

2. P is the unique solution to the forward equation, dP(t)
dt = P(t)Q with initial conditon P(0) = I.

3. P is the unique solution to the backward equation, dP(t)
dt = QP(t) with initial condition P(0) = I.

4. For all k ∈N, we have dkP(t)
dk(t)

∣∣∣
t=0

= Qk.

Proof. Given the definition of P and properties of Q, one can easily check these properties.

Theorem 1.7. A finite matrix Q ∈RX×X satisfies the properties of a generator matrix given in Corollary 1.3 iff
the function P : R+→RX×X

+ defined by P(t) , etQ is a stochastic matrix for all t ∈R+.

Proof. Sufficiency has already been seen before, and hence we will focus only on necessity. Accordingly, we
assume that Q ∈ RX×X satisfies the properties of a generator matrix given in Corollary 1.3, then we will show
that P(t) = etQ is a stochastic matrix.

Recall that 1Q = 0 for all ones vector 1, and hence 1Qn = 0 for all n ∈N. Expanding P(t) in terms of
expression for matrix exponentiation, we write

P(t) = I + ∑
k∈N

tn

n!
Qn.

This implies that 1P(t) = 1.

1.1 Transition graph
The weighted directed transition graph (V ,E,w) consists of vertex set V = X and the edges being

E =
{
(x,y) ∈ X×X : Qxy > 0,y 6= x

}
.

The weights w : E→R+ of the directed edges are given by wxy = Qxy = νx pxy.

2 Uniformization
Consider a homogeneous continuous-time Markov chain X : Ω→ XR+ in which the mean time spent in a state
is identical for all states, i.e. νx = ν uniformly for all states x ∈ X. Recall that Nt = ∑n∈N1{Sn6t} denotes the
number of state transitions until time t ∈ R+. Since the random amount of time spent in each state is i.i.d. with
common exponential distribution of rate ν , the counting process N : Ω→Z

R+
+ is a Poisson process with rate ν .

In this case, we can explicitly characterize the transition kernel function P : R+→ [0,1]X×X for this CTMC X in
terms of the jump transition probability matrix p ∈ [0,1]X×X and uniform transition rate ν . To this end, we use
the law of total probability over countable partitions ({Nt = n} : n ∈Z+) to get

Pxy(t) = ∑
n∈Z+

Px {N(t) = n}P({Xt = y}
∣∣ {X0 = x,Nt = n}) = ∑

n∈Z+

p(n)xy e−νt (νt)n

n!
.

This equation could also have been derived by observing that Q = −ν(I− p) and hence using the exponentiation
of matrix, we can write

P(t) = e−νt(I−p) = e−νteνt p = e−νt
∑

n∈Z+

pn (νt)n

n!
. (2)

Eq. (2) gives a closed form expression for P(t) and also suggests an approximate computation by an appropriate
partial sum. However, its application is limited as the transition rates for all states are all assumed to be equal. It
turns out that any regular Markov chain can be transformed in this form by allowing hypothetical transitions from
a state to itself.
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2.1 Uniformization step
Consider a regular CTMC X : Ω→ XR+ with bounded transition rates, with finite rate ν such that νx 6 ν for
all states x ∈ X. Since from each state x ∈ X, the Markov chain leaves at rate νx, we could equivalently assume
that the transitions occur at a rate ν but only νx

ν
are real transitions and the remaining transitions are fictitious

self-transitions.

Construction 2.1 (uniformization). For any regular continuous time Markov chain X : Ω→XR+ with transition
rate ν : X→R+ and jump probability transition matrix p ∈ [0,1]X×X, we can find a finite rate ν > supx∈X νx. We
construct a continuous time Markov chain Y : Ω→ XR+ with uniform transition rates ν for all states x ∈ X, and
jump probability transition matrix q ∈ [0,1]X×X defined as

qxy =
νx

ν
pxy1{y6=x}+

(
1− νx

ν

)
1{y=x}, x,y ∈ X.

The process Y is called the uniformized version of process X . This technique of uniformizing the rate in which a
transition occurs from each state to any other state by introducing self transitions is called uniformization.

Theorem 2.2. A regular CTMC X and its uniformized version Y are identical in distribution.

Proof. We consider the i.i.d. sequence of transition times T : Ω→RN
+ with the common exponential distribution

of rate ν for the Markov process Y . Assuming the initial state x for the Markov process Y , we define a random
sequence of indicators ξ : Ω→{0,1}N, defined by

ξn , 1{YTn 6=x}, n ∈N.

From the definition of uniformized process Y , we know that Px {ξn = 0}= qxx = 1− νx
ν

, and ξ is an i.i.d. sequence.
We can define the corresponding counting process N : Ω→ZN

+ that counts the number of transitions to exit state
x, as

N , inf{n ∈N : ξn = 1} .

Since ξ is i.i.d. Bernoulli, N is a geometric random variable with success probability 1−qxx =
νx
ν

. To show that
the two Markov processes Y and X have identical distribution, it suffices to show that

(a) U , ∑
N
n=1 Tn is distributed exponentially with rate νx, and

(b) P({YU = y}
∣∣ {Y0 = x}) = pxy.

To see (a), we observe that random sequence T and random variable N are independent, and hence we can compute
the moment generating function of U as

MU (θ ) = E

[
E[

N

∏
n=1

e−θTn |N]

]
= EMN

T1
(θ ) = ∑

n∈N

(
ν

ν +θ

)n

qn−1
xx (1−qxx) =

νx

νx +θ
.

To see (b), from the Markov property of process Y and its embedded jump transition matrix q, we observe that

Px {YU = y}= ∑
n∈N

Px {YU = y,N = n}= ∑
n∈N

Px {Y1 = · · ·= Yn−1 = x,Yn = y}= ∑
n∈N

qxyqn−1
xx =

qxy

1−qxx
= pxy.

Remark 4. Any regular continuous time Markov chain X : Ω→ XR+ can be thought of as being in a process that
spends a random time in state x ∈ X distributed exponentially with rate ν , and then makes a transition to state
y ∈ X with probability p∗xy. Then, one can write the probability transition kernel as

Pxy(t) =
∞

∑
n=0

q(n)xy e−νt (νt)n

n!
.

3 Class Properties
Definition 3.1. For a CTMC X : Ω → XR+ defined on the countable state space X ⊆ R, we say a state y is
reachable from state x if Pxy(t)> 0 for some t > 0, and we denote x→ y. If two states x,y ∈X are reachable from
each other, we say that they communicate and denote it by x↔ y.

Lemma 3.2. Communication is an equivalence relation.
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Definition 3.3. Communication equivalence relation partitions the state space X into equivalence classes called
communicating classes. A CTMC with a single communicating class is called irreducible.

Theorem 3.4. A regular CTMC and its embedded DTMC have the same communicating classes.

Proof. It suffices to show that x → y for the regular Markov process iff x → y in the embedded chain. If
x→ y for embedded chain, then there exists a path x = x0,x1, . . . ,xn = y such that px0x1 px1x2 . . . pxn−1xn > 0 and
νx0νx1 . . .νxn−1 > 0. It follows that Sn is a proper random variable, and we can write

Pxy(t) >
n−1

∏
k=0

pxkxk+1E[P{Tn+1 > t−Sn}] > 0.

Conversely, if the states y is not reachable from state x in embedded chain, then it won’t be reachable in the regular
CTMC.

Corollary 3.5. A regular CTMC is irreducible iff its embedded DTMC is irreducible.

Remark 5. There is no notion of periodicity in CTMCs since there is no fundamental time-step that can be used
as a reference to define such a notion. In fact, for any state x ∈X of a non-instantaneous homogeneous CTMC we
have Pxx(t) > e−νxt > 0 for all t > 0.

3.1 Recurrence and transience
Definition 3.6. For any state y ∈ X, we define the first hitting time to state y after leaving state y as

τ
+
y = inf{t > Y0 : Xt = y} .

The state y is said to be recurrent if Py
{

τ+y < ∞
}
= 1 and transient if Py

{
τ+y < ∞

}
< 1. Furthermore, a recurrent

state y is said to be positive recurrent if Eyτ+y < ∞ and null recurrent if Eyτ+y = ∞.

Theorem 3.7. An irreducible CTMC is recurrent iff its embedded DTMC is recurrent.

Proof. There is nothing to prove for |X| = 1. Hence, we assume |X| > 2 without loss of generality. Suppose
that the embedded Markov chain Z : Ω→ XN is recurrent. Let the initial state Z0 = x ∈ X, the number of visits
to state y during successive visit to state x be denoted by Nxy, and the kth sojourn time in state y by Y (y)

k . Since
the embedded chain is irreducible, it has no absorbing states. This implies Nxy and ∑y∈X Nxy are finite almost
surely, and the random sequence Y (y) : Ω→RN

+ is i.i.d. exponential with rate νy ∈ (0,∞), and sequences Y (y) are

independent for each state y ∈X. Since we can write τ+x = ∑y∈X ∑
Nxy
k=1 Y (y)

k , it follows that the recurrence time τ+x
is finite almost surely.

Conversely, if the embedded Markov chain is not recurrent, it has a transient state x∈X for which Px {Nx = ∞}>
0. By the same argument, Px

{
τ+x = ∞

}
> 0 and hence the CTMC is not recurrent.

Remark 6. An irreducible regular CTMC maybe null recurrent where embedded Markov chain is positive recur-
rent.

Corollary 3.8. Recurrence is a class property.

Theorem 3.9. Consider an irreducible recurrent CTMC X : Ω → XR+ with sojourn time rates ν ∈ RX
+ and

transition matrix p ∈ [0,1]X×X for the embedded Markov chain. Let u ∈ RX
+ be any strictly positive solution of

u = up, then

Exτ
+
x =

1
ux

∑
y∈X

uy

νy
, x ∈ X.

Proof. Let X0 = x ∈ X, and Nxy be the number of visits to state y ∈ X between successive visits to state x in
the embedded Markov chain. From the recurrence of the embedded Markov chain, we know that for any strictly
positive solution to u = uP we have ExNxy =

uy
ux

. Let Y (x)
k denote the sojourn time of the CTMC X in state x during

the kth visit. The random sequence Y (x) : Ω→RN
+ is i.i.d. exponential with rate νx. Therefore, we can write

τ
+
x = Y x

0 + ∑
y∈X\{x}

Nxy

∑
k=1

Y (y)
k .
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We recall that jump chain and sojourn times are independent given the initial state, and hence Nxy and Y (y) se-
quences are independent for each state y 6= x. Result follows from taking expectations on both sides, exchanging
summation and expectations for positive random variables, to get

Exτ
+
x = ExY x

0 + ∑
y∈X\{x}

Ex

Nxy

∑
k=1

Y (y)
k = ∑

y∈X
EY (y)

k ExNxy.

Corollary 3.10. Consider an irreducible recurrent CTMC X : Ω→XR+ with sojourn time rates ν ∈RX
+ and the

transition matrix p for the embedded Markov chain. Let u be any strictly positive solution to u = up. Then, CTMC
X is positive recurrent iff ∑x∈X

ux
νx

< ∞. In particular, the CTMC is positive recurrent iff ∑x∈X
ux
νx

= 1.

4 Stationarity
Definition 4.1. A map π : X→ [0,1] is an equilibrium distribution of a homogeneous continuous time Markov
chain X : Ω→XR+ with probability transition kernel P : R+→ [0,1]X×X if 1π = 1 and πP(t) = π for all t ∈R+.

Remark 7. Let π(0) denote the marginal distribution of initial state X0, then by definition of probability transition
kernel for Markov process X , we can write the marginal distribution of Xt as

π(t) = π(0)P(t), t ∈R+.

In general, we can write π(s+ t) = π(s)P(t), and hence if there exists a stationary distribution π , lims→∞ π(s)
for this process X , then we would have π = πP(t) for all times t ∈R+.

Remark 8. Recall that an irreducible DTMC is positive recurrent iff it has a strictly positive stationary distribution.

Corollary 4.2. For a homogeneous continuous time Markov chain X : Ω→ XR+ with generator matrix Q, a
distribution π : X→ [0,1] is an equilibrium distribution iff πQ = 0.

Proof. Recall that we can write the transition probability matrix P(t) at any time t ∈ R+ in terms of generator
matrix Q as P(t) = etQ. Using the exponentiation of a matrix, we can write

πP(t) = etQ = π + ∑
n∈N

tn

n!
πQn, t ∈R+.

Therefore, πQ = 0 iff π is an equilibrium distribution of the Markov process X .

Theorem 4.3. Let X : Ω→ XR+ be an irreducible recurrent homogeneous CTMC with probability transition
kernel P : R+ → [0,1]X×X, the transition rate sequence ν ∈ RX

+ , and the transition matrix for embedded jump
chain p ∈ [0,1]X. Then for all states x,y ∈ X the limt→∞ Pxy(t) exists, this limit is independent of the initial state
x ∈ X and denoted by πy. Let u be any strictly positive invariant measure such that u = up. If ∑x∈X

ux
νx

= ∞, then
πx = 0 for all x ∈ X. If ∑x∈X

ux
νx

< ∞ then for all y ∈ X,

πy =

uy
νy

∑x∈X
ux
νx

=
ν−1

y

Eyτ
+
y

.

Proof. Fix a state y ∈ X, and define a process W : Ω→{0,1}R+ such that Wt = 1{Xt=y}. Then, from the regener-
ative property of the homogeneous CTMC and renewal reward theorem, we have

lim
t→∞

Px {Xt = y}=
ν−1

y

Eyτ
+
y

.
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