Lecture-19: Reversibility

1 Introduction

Definition 1.1. A stochastic process X : () — XR is reversible if the vector (X, ..., X,) has the same distribution
as (X4, .., X¢—y,) for all finite positive integers n, time instants #; < 7, < --- < 1, and shifts T € R.

Lemma 1.2. A reversible process is stationary.

Proof. Since X, is reversible, both (X;,,...,X;,) and (Xs+s,,. . ., Xs1s, ) have the same distribution as (X_,,...,X_,)
foreachn € N and# < --- <t,, by taking T = 0 and T = —s respectively. O

Definition 1.3. The space of distributions over state space X is denoted by
P(X) £ {ae 0,1  :1a= ) a= 1}.
xeX

Theorem 1.4. A stationary homogeneous Markov process X : Q — X® with countable state space X C R and
probability transition kernel P: Ry — [0, 1]Dfo)C is reversible iff there exists a probability distribution T € P(X),
that satisfy the detailed balanced conditions

TPy (1) = P (1) for all x,y € X and timest € R . (D
When such a distribution T exists, it is the equilibrium distribution of the process.

Proof. We assume that the process X is reversible, and hence stationary. We denote the stationary distribution by
7, and by reversibility of X, we have

Pe{X, = x,X,, =y} = Pr {X;, =x.X;, =y},

for T = 1, +t;. Hence, we obtain the detailed balanced conditions in Eq. ([I]) Conversely, let 7 be the distribution
that satisfies the detailed balanced conditions in Eq. (I)), then summing up both sides over y € X, we see that 7 is
the equilibrium distribution.

Let (x1,...,xn) € X™, then applying detailed balanced equations in Eq. (T) repeatedly, we can write

T(x1) Py (2 —11) .. Peyy o (tn — tm—1) = (%) P,y (b — tm—1) - . . Peyx, (12 — 11).
For the homogeneous stationary Markov process X, it follows that for all #p € R
Pe{Xy =x1,... X, = Xm} = P { Xy = X - . Xttty =1}
Since m € IN and fg,¢; .. .,t, were arbitrary, the reversibility follows. O

Corollary 1.5. A stationary discrete time Markov chain X : Q — X% with transition matrix P € [0,1]X*% is

reversible iff there exists a probability distribution T € P(X), that satisfies the detailed balanced conditions
TPy = TPy, x,y€X. 2)
When such a distribution T exists, it is the equilibrium distribution of the process.

Corollary 1.6. A stationary Markov process X : Q) — X® and generator matrix Q € RX*X is reversible iff there
exists a probability distribution T € P(X), that satisfies the detailed balanced conditions

T Qyxy = TyQyx, X, Y E€ X. 3)

When such a distribution T exists, it is the equilibrium distribution of the process.



Example 1.7 (Random walks on edge-weighted graphs). Consider an undirected graph G = (X, E) with
the vertex set X and the edge set E = {{x,y} : x,y € X} being a subset of unordered pairs of elements from
X. We say that y is a neighbor of x (and x is a neighbor of y), if e = {x,y} € E and denote x ~y. We assume a
function w : E — R, such that w, is a positive number associated with each edge e = {x,y} € E. Let X, € X
denote the location of a particle on one of the graph vertices at the nth time-step. Consider the following
random discrete time movement of a particle on this graph from one vertex to another. If the particle is
currently at vertex x then it will next move to vertex y with probability

Px*ép Xnt1 =y Xp=x :Ll e={xy}}-
y = P({Xatr =y} { ) T e wy e

The Markov chain X : Q) — XN describing the sequence of vertices visited by the particle is a random walk
on an undirected edge-weighted graph. Google’s PageRank algorithm, to estimate the relative importance of
webpages, is essentially a random walk on a graph!

Proposition 1.8. Consider an irreducible homogeneous Markov chain that describes the random walk on an
edge weighted graph with a finite number of vertices. In steady state, this Markov chain is time reversible
with stationary probability of being in a state x € X given by
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Proof. Using the definition of transition probabilities for this Markov chain and the given distribution @
defined in (@), we notice that

We
TPy =———1(,_1y11, TPy = ———1N,_r 0.
xLxy Y rer Wy {e={xy}} yEyx Y rer Wy {e={xy}}
Hence, the detailed balance equation for each pair of states x,y € X is satisfied, and the result follows. ]

We can also show the following dual result.

Lemma 1.9. Let X : Q) — X%+ be a reversible Markov chain on a finite state space X and transition prob-
ability matrix P € [0, l]xxx. Then, there exists a random walk on a weighted, undirected graph G with the
same transition probability matrix P.

Proof. We create a graph G = (X,E), where {x,y} € E if and only if P, > 0. For the stationary distribution
7 : X — [0,1] for the Markov chain X, we set the edge weights

A
W{x,y} = nxpxy = ﬁyPyx,

With this choice of weights, it is easy to check that wy =Y r..c y Wy = T, and the transition matrix associated
with a random walk on this graph is exactly P. O

Is every Markov chain reversible?

1. If the process is not stationary, then no. To see this, we observe that
P{th - XI,th - x2} - vtl (-xl )lexz (f2 - tl )9 P{XT—I‘Z - xZ’XT—tl - -xl} - vT—tz (XZ)PxZ)q (t2 - tl)
If the process is not stationary, the two probabilities can’t be equal for all times 7,7,1, and states x,x; € X.

2. If the process is stationary, then it is still not true in general. Suppose we want to find a stationary distribution
a € P(X) that satisfies the detailed balance equations Py, = o, P, for all states x,y € X. For any arbitrary
Markov chain X, one may not end up getting any solution. To see this consider a state z € X such that
P, P,. > 0. Reversibility condition implies that Py {X; = x,X> = y,X3 =z} = Po {X1 =2, X0 =y, X3 = 2},
and hence

% _ PP, Pu
oy nyPyz sz

Thus, we see that a necessary condition for time reversibility is P, Py, P,y = P Py Py for all x,y,z € X.



Theorem 1.10 (Kolmogorov’s criterion for reversibility of Markov chains). A stationary Markov chain X :
Q — XZ is time reversible if and only if starting in state x € X, any path back to state x has the same probability
as the reversed path, for all initial states x € X. That is, for all n € N and states (xy,...,x,) € X"

P Poxy - - Pox = Py, Py -+ - Py

Proof. The proof of necessity is as indicated above. To see the sufficiency part, fix states x,y € X. For any
non-negative integer n € IN, we compute

(P")xyPyx = Z Pree o Py Py = PyPyx, .. Peyx = Poy(P") .

X1:X25---Xn X1:X25.--Xn

Taking the limit n — co and noticing that (P")., " m, Vx,y € X, we get the desired result by appealing to
Theorem T4l O

1.1 Reversible Processes

Definition 1.11. Let X : QO — X® be a stationary homogeneous Markov process with stationary distribution S
il ﬁt 9
where N} = ¥,.cn Lis,<tXo=yX, =x} and Ny = ¥,eN Lis, <) respectively denote the total number of transitions
from state x to state y and the total number of transition in time duration (0,7].

P(X) and the generator matrix Q € RX*X_ The probability flux from state x to state y is defined as lim; o N2

Lemma 1.12. The probability flux from state x to state y is

Xy

—1; t
ﬂxQxy = tli)n;lo Vt

Lemma 1.13. For a stationary Markov process X : Q0 — XR, probability flux balances across a cut A C X, that is

Y Y moy=Y Y 1,0

yEAXEA XEAyEA

Proof. From global balance condition 7Q = 0, we get Y e Yrexx TeOry = Yxea Lyex ByQyx = 0. Further, we
have the following identity Y ca ¥.xca TcOxy = Yyea Yoxea TyQyr- Subtracting the second identity from the first,
we get the result. O

Corollary 1.14. For A = {x}, the above equation reduces to the full balance equation for state x, i.e.,

Z ﬂxQxy = Z ﬂyQy)o
y#x yFx

Example 1.15. We define two non-negative sequences birth and death rates denoted by A € ]R%+ and U €

]R]f. A Markov process X : () — Z]E* is called a birth-death process if its infinitesimal transition probabilities
satisfy
15 otz (h) = ( 1 — Aph — tpyh— 0(/’1)) l{m:()} =F lnhl{mzl} + ,u,,hl{m:,l} + O(h).

We say f(h) = o(h) if limy_,o f(h) /h = 0. In other words, a birth-death process is any CTMC with generator

of the form
—2o Ao 0 0 0
8 —(l] +u1) M 0 0
o=| 0 12 —(A2+ p2) A2 0

0 0 I —(M+us) Az

Proposition 1.16. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form A =
{0,1,2,...,n}, for n € Z. But, this is precisely the equation m,A, = 7,1 Uy, since there are no other
transitions possible across the cut. So the process is time-reversible. O

In fact, the following, more general, statement can be proven using similar ideas.



Proposition 1.17. Consider an ergodic CTMC X : Q) — XR on a countable state space X with generator matrix
0 € R having the following property. For any pair of states x # y € X, there is a unique path x = xo — x| —
"= Xy(xy) = Y Of distinct states having positive probability. Then the CTMC in steady-state is reversible.

Proof. Let the stationary distribution of X be 7 € fP(f)C), such that 7Q = 0. For a finite n € IN, increasing time
instants t] < --- <, and states x,xy,...,X,—1,y € X we consider the probability

Pe{Xyy =x.X, =x1,....%, =y} = TPu (11 —10) ... Pe, 1, (tn — In—1)-

For the same n € IN, increasing time instants #; < --- < t,, and states x,xj,...,x,—1,y € X, and shift T € R, we
consider the probability

Pﬂf {XT—[,, = y:XT—tn,l = Xp—15-- '9XT—[0 = x} = ”Pyxn,l (tVl _tn—l) . 'P)C]X(tl _IO)
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