
Lecture-19: Reversibility

1 Introduction
Definition 1.1. A stochastic process X : Ω→XR is reversible if the vector (Xt1 , . . . ,Xtn) has the same distribution
as (Xτ−t1 , . . . ,Xτ−tn) for all finite positive integers n, time instants t1 < t2 < · · ·< tn and shifts τ ∈R.

Lemma 1.2. A reversible process is stationary.

Proof. Since Xt is reversible, both (Xt1 , . . . ,Xtn) and (Xs+t1 , . . . ,Xs+tn) have the same distribution as (X−t1 , . . . ,X−tn)
for each n ∈N and t1 < · · ·< tn, by taking τ = 0 and τ = −s respectively.

Definition 1.3. The space of distributions over state space X is denoted by

P(X) ,

{
α ∈ [0,1]X : 1α = ∑

x∈X
αx = 1

}
.

Theorem 1.4. A stationary homogeneous Markov process X : Ω→ XR with countable state space X ⊆ R and
probability transition kernel P : R+→ [0,1]X×X is reversible iff there exists a probability distribution π ∈ P(X),
that satisfy the detailed balanced conditions

πxPxy(t) = πyPyx(t) for all x,y ∈ X and times t ∈R+. (1)

When such a distribution π exists, it is the equilibrium distribution of the process.

Proof. We assume that the process X is reversible, and hence stationary. We denote the stationary distribution by
π , and by reversibility of X , we have

Pπ {Xt1 = x,Xt2 = y}= Pπ {Xt2 = x,Xt1 = y} ,

for τ = t2 + t1. Hence, we obtain the detailed balanced conditions in Eq. (1). Conversely, let π be the distribution
that satisfies the detailed balanced conditions in Eq. (1), then summing up both sides over y ∈ X, we see that π is
the equilibrium distribution.

Let (x1, . . . ,xm) ∈ Xm, then applying detailed balanced equations in Eq. (1) repeatedly, we can write

π(x1)Px1x2(t2− t1) . . .Pxm−1xm(tm− tm−1) = π(xm)Pxmxm−1(tm− tm−1) . . .Px2x1(t2− t1).

For the homogeneous stationary Markov process X , it follows that for all t0 ∈R+

Pπ {Xt1 = x1, . . . ,Xtm = xm}= Pπ

{
Xt0 = xm, . . . ,Xt0+tm−t1 = x1

}
.

Since m ∈N and t0, t1 . . . , tm were arbitrary, the reversibility follows.

Corollary 1.5. A stationary discrete time Markov chain X : Ω→ XZ with transition matrix P ∈ [0,1]X×X is
reversible iff there exists a probability distribution π ∈ P(X), that satisfies the detailed balanced conditions

πxPxy = πyPyx, x,y ∈ X. (2)

When such a distribution π exists, it is the equilibrium distribution of the process.

Corollary 1.6. A stationary Markov process X : Ω→ XR and generator matrix Q ∈RX×X is reversible iff there
exists a probability distribution π ∈ P(X), that satisfies the detailed balanced conditions

πxQxy = πyQyx, x,y ∈ X. (3)

When such a distribution π exists, it is the equilibrium distribution of the process.
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Example 1.7 (Random walks on edge-weighted graphs). Consider an undirected graph G = (X,E) with
the vertex set X and the edge set E = {{x,y} : x,y ∈ X} being a subset of unordered pairs of elements from
X. We say that y is a neighbor of x (and x is a neighbor of y), if e = {x,y} ∈ E and denote x∼ y. We assume a
function w : E→R+, such that we is a positive number associated with each edge e = {x,y} ∈ E. Let Xn ∈X
denote the location of a particle on one of the graph vertices at the nth time-step. Consider the following
random discrete time movement of a particle on this graph from one vertex to another. If the particle is
currently at vertex x then it will next move to vertex y with probability

Pxy , P({Xn+1 = y}|{Xn = x}) = we

∑ f :x∈ f w f
1{e={x,y}}.

The Markov chain X : Ω→ XN describing the sequence of vertices visited by the particle is a random walk
on an undirected edge-weighted graph. Google’s PageRank algorithm, to estimate the relative importance of
webpages, is essentially a random walk on a graph!

Proposition 1.8. Consider an irreducible homogeneous Markov chain that describes the random walk on an
edge weighted graph with a finite number of vertices. In steady state, this Markov chain is time reversible
with stationary probability of being in a state x ∈ X given by

πx =
∑ f :x∈ f w f

2∑g∈E wg
. (4)

Proof. Using the definition of transition probabilities for this Markov chain and the given distribution π

defined in (4), we notice that

πxPxy =
we

∑ f∈E w f
1{e={x,y}}, πyPyx =

we

∑ f∈E w f
1{e={x,y}}.

Hence, the detailed balance equation for each pair of states x,y ∈ X is satisfied, and the result follows.

We can also show the following dual result.

Lemma 1.9. Let X : Ω→ XZ+ be a reversible Markov chain on a finite state space X and transition prob-
ability matrix P ∈ [0,1]X×X. Then, there exists a random walk on a weighted, undirected graph G with the
same transition probability matrix P.

Proof. We create a graph G = (X,E), where {x,y} ∈ E if and only if Pxy > 0. For the stationary distribution
π : X→ [0,1] for the Markov chain X , we set the edge weights

w{x,y} , πxPxy = πyPyx,

With this choice of weights, it is easy to check that wx = ∑ f :x∈ f w f = πx, and the transition matrix associated
with a random walk on this graph is exactly P.

Is every Markov chain reversible?

1. If the process is not stationary, then no. To see this, we observe that

P{Xt1 = x1,Xt2 = x2}= νt1(x1)Px1x2(t2− t1), P{Xτ−t2 = x2,Xτ−t1 = x1}= ντ−t2(x2)Px2x1(t2− t1).

If the process is not stationary, the two probabilities can’t be equal for all times τ , t1, t2 and states x1,x2 ∈X.

2. If the process is stationary, then it is still not true in general. Suppose we want to find a stationary distribution
α ∈ P(X) that satisfies the detailed balance equations αxPxy = αyPyx for all states x,y ∈X. For any arbitrary
Markov chain X , one may not end up getting any solution. To see this consider a state z ∈ X such that
PxyPyz > 0. Reversibility condition implies that Pα {X1 = x,X2 = y,X3 = z} = Pα {X1 = z,X2 = y,X3 = z},
and hence

αx

αz
=

PzyPyx

PxyPyz
6= Pzx

Pxz
.

Thus, we see that a necessary condition for time reversibility is PxyPyzPzx = PxzPzyPyx for all x,y,z ∈ X.
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Theorem 1.10 (Kolmogorov’s criterion for reversibility of Markov chains). A stationary Markov chain X :
Ω→ XZ is time reversible if and only if starting in state x ∈ X, any path back to state x has the same probability
as the reversed path, for all initial states x ∈ X. That is, for all n ∈N and states (x1, . . . ,xn) ∈ Xn

Pxx1Px1x2 . . .Pxnx = Pxxn Pxnxn−1 . . .Px1x.

Proof. The proof of necessity is as indicated above. To see the sufficiency part, fix states x,y ∈ X. For any
non-negative integer n ∈N, we compute

(Pn)xyPyx = ∑
x1,x2,...xn

Pxx1 . . .PxnyPyx = ∑
x1,x2,...xn

PxyPyxn . . .Px1x = Pxy(Pn)yx.

Taking the limit n→ ∞ and noticing that (Pn)xy
n→∞→ πy ∀x,y ∈ X, we get the desired result by appealing to

Theorem 1.4.

1.1 Reversible Processes
Definition 1.11. Let X : Ω→ XR be a stationary homogeneous Markov process with stationary distribution π ∈
P(X) and the generator matrix Q ∈RX×X. The probability flux from state x to state y is defined as limt→∞

Nxy
t

Nt
,

where Nxy
t = ∑n∈N1{Sn6t,Xn=y,Xn−1=x} and Nt = ∑n∈N1{Sn6t} respectively denote the total number of transitions

from state x to state y and the total number of transition in time duration (0, t].

Lemma 1.12. The probability flux from state x to state y is

πxQxy = lim
t→∞

Nxy
t

Nt
.

Lemma 1.13. For a stationary Markov process X : Ω→XR, probability flux balances across a cut A⊆X, that is

∑
y/∈A

∑
x∈A

πxQxy = ∑
x∈A

∑
y/∈A

πyQyx.

Proof. From global balance condition πQ = 0, we get ∑y∈A ∑x∈X πxQxy = ∑x∈A ∑y∈X πyQyx = 0. Further, we
have the following identity ∑y∈A ∑x∈A πxQxy = ∑y∈A ∑x∈A πyQyx. Subtracting the second identity from the first,
we get the result.

Corollary 1.14. For A = {x}, the above equation reduces to the full balance equation for state x, i.e.,

∑
y 6=x

πxQxy = ∑
y6=x

πyQyx.

Example 1.15. We define two non-negative sequences birth and death rates denoted by λ ∈ R
Z+
+ and µ ∈

RN
+ . A Markov process X : Ω→Z

R+
+ is called a birth-death process if its infinitesimal transition probabilities

satisfy
Pn,n+m(h) = (1−λnh−µnh−o(h))1{m=0}+λnh1{m=1}+ µnh1{m=−1}+ o(h).

We say f (h) = o(h) if limh→0 f (h)/h = 0. In other words, a birth-death process is any CTMC with generator
of the form

Q =


−λ0 λ0 0 0 0
µ1 −(λ1 + µ1) λ1 0 0 · · ·
0 µ2 −(λ2 + µ2) λ2 0 · · ·
0 0 µ3 −(λ3 + µ3) λ3 · · ·
...

...
...

...
...

. . .

 .

Proposition 1.16. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form A =
{0,1,2, . . . ,n}, for n ∈ Z+. But, this is precisely the equation πnλn = πn+1µn+1 since there are no other
transitions possible across the cut. So the process is time-reversible.

In fact, the following, more general, statement can be proven using similar ideas.
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Proposition 1.17. Consider an ergodic CTMC X : Ω→ XR on a countable state space X with generator matrix
Q ∈RX×X having the following property. For any pair of states x 6= y ∈X, there is a unique path x = x0→ x1→
·· · → xn(x,y) = y of distinct states having positive probability. Then the CTMC in steady-state is reversible.

Proof. Let the stationary distribution of X be π ∈ P(X), such that πQ = 0. For a finite n ∈N, increasing time
instants t1 < · · ·< tn, and states x,x1, . . . ,xn−1,y ∈ X we consider the probability

Pπ

{
Xt0 = x,Xt1 = x1, . . . ,Xtn = y

}
= πPxx1(t1− t0) . . .Pxn−1xn(tn− tn−1).

For the same n ∈N, increasing time instants t1 < · · · < tn, and states x,x1, . . . ,xn−1,y ∈ X, and shift τ ∈ R, we
consider the probability

Pπ

{
Xτ−tn = y,Xτ−tn−1 = xn−1, . . . ,Xτ−t0 = x

}
= πPyxn−1(tn− tn−1) . . .Px1x(t1− t0).

X
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