
Lecture-20: Queues

1 Continuous time queues
A queueing system consists of arriving entities buffered to get serviced by a collection of servers with finite service
capacity. The notation A/T /N/B/S for a queueing system indicates

A : inter-arrival time distribution,

T : service time distribution,

N : number of servers,

B : buffer size, or the maximum number of entities waiting and in service at any time (∞ by default),

S : queueing service discipline (FIFO by default).

Typical inter-arrival times are general independent (GI) so that number of arrivals is a renewal counting process,
memoryless (M) for Poisson arrivals, phase-type, or deterministic (D). Similarly, the typical service times are
general independent (GI), memoryless (M) for exponential service times, phase-type, or deterministic (D). The
number of servers could be one, finite, or countably finite. The buffer size is typically arbitrarily large, or equal to
the number of servers. Service discipline is usually first-come-first-served (FCFS), last-come-first-served (LCFS),
or priority-ordered with or without pre-emption, or processor-shared (PS).

Typical performance metrics of interest are the sojourn times of each arriving entity, and number of entities in
the queue as seen by the arriving/departing customer or by the system.

1.1 GI/G/1 queue
The nth entity arrives at instant An and requires service σn, and the duration between (n+ 1)th and nth entity is
denoted by ξn = An−An−1. The random inter-arrival sequence ξ : Ω→RN

+ and random service times sequence
σ : Ω→RN

+ are assumed to be i.i.d. and independent. The arrival point process A : RN
+ is assumed to be simple,

that is P{ξ1 > 0}= 1, and hence this point process is a renewal process. The arrival rate is denoted by λ , 1
Eξ1

,

and the service rate is denoted by µ , 1
Eσ1

. The average load on the system is denoted by ρ , Eσn
Eξn

= λ

µ
.

The number of arrivals and departures in a time duration I ⊆R+ are denoted by NA(I) and ND(I) respectively.
The departure instant and waiting time for the start of the service of the nth customer are denoted by Dn and Wn

respectively. The number of entities in the buffer at time t is denoted by Lt , and hence L : Ω→Z
R+
+ is a random

process. Defining (x)+ , max{x,0}, and letting W0 = w, we can write the waiting time for (n+ 1)th customer
before it receives service, as

Wn+1 = (Wn +σn−ξn+1)+, n ∈N.

We define nth step-size Xn = σn − ξn+1 for a random walk Sn = ∑
n
i=1 Xi with S0 = 0. For the random walk

S : Ω→ RZ+ , the history of until nth step is denoted by Fn , σ(σ1, . . . ,σn,ξ1, . . . ,ξn+1). In terms of the i.i.d.
step-size sequence X : Ω→ RN, we can write Wn+1 = (Wn +Xn)+ for each n ∈N. From the independence of
sequence ((σn,ξn+1) : n ∈N), it follows that reflected random walk W : Ω→RN

+ is a Markov process.

Theorem 1.1 (Poisson arrivals see time averages (PASTA)). At any time t, we denote a system state by Xt . Let
B ∈B(R+) a Borel measurable set, then

τ̄B , lim
t∈R+

1
t

∫ t

0
1{Xu∈B}du = lim

n∈N

1
n

n

∑
i=1

1{
Xt−i
∈B
} , c̄B.

Proof. We will show the special case when Xt = Lt is the number of customers in the system at time t, and
B = {n}. Using continuity of probability, we define for n ∈Z+

πn , lim
t→∞

P{Lt = n}, αn , lim
k∈N

P{Lt−k
= n}= lim

k∈N
lim
h↓0

P{Ltk−h = n|Ltk = n+ 1}.
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Using independent increment property of Poisson arrivals, Baye’s rule, and the fact that limk∈N tk = ∞, we can
write the second limiting probability as

αn = lim
k∈N

limh ↓ 0
P{Ltk−h = n,NA(tk−h, tk] = 1}

P{NA(tk−h, tk] = 1}
= lim

t→∞
P{Lt = n}= πn.

Theorem 1.2 (Little’s law). For a GI/G/1 queue with ρ < 1,

lim
t→∞

∫ t
0 Ludu

t
= lim

t→∞

∑
NA(0,t]
i=1 (Wi +σi)

NA(0, t]
.

Proof. The key observation follows from looking at the piecewise constant curve Lt , to conclude

ND(0,t]

∑
i=1

(Wi +σi) ≤
∫ t

0
Ludu≤

NA(0,t]

∑
i=1

(Wi +σi).

Further, for a stable queue we have limt→∞
ND(0,t]

t = limt→∞
NA(0,t]

t . Combining these two results, the theorem
follows from renewal reward theorem.

1.2 M/M/1 queue
We consider the simplest continuous time queueing system with Poisson arrivals of homogeneous rate λ = 1

Eξ1
,

independent i.i.d. exponential service time of rate µ = 1
Eσ1

for each arrival, single server with infinite buffer size,

and FCFS service discipline. It is clear that L : Ω→ Z
R+
+ is a right continuous process with left limits, and is

piece-wise constant. We observe that Lt remains unchanged in the time t +[0,min{YA(t),YS(t)}). Further, Lt can
have at most one transition in an infinitesimally small interval (t, t +h] with high probability, since the probability
of two or more transitions is of order o(h). Further, we observe that Lt can have a unit increase if YA(t) < YS(t)
and a unit decrease otherwise, for Lt > 1. If Lt = 0, there can be no service and Lt remains 0 until t +YA(t), and
has a unit increase at time t +YA(t).

Since the arrival and the service times are memoryless, the residual time for next arrival YA(t) is identically
distributed to ξ1 and independent of past Ft and residual service time for entity in service YS(t) is identically
distributed to σ1 and independent of past Ft . It follows that L is a homogeneous CTMC, and we can write the
corresponding generator matrix as

Q(n,m) = λ1{m−n=1}+ µ1{n−m=1,m>0}.

We observe that Q(n,n) = −(λ + µ) for n ∈N and Q(0,0) = −λ .
The M/M/1 queue is the simplest and most studied models of queueing systems. We assume a continuous-time

queueing model with following components.

• There is a single queue for waiting that can accommodate arbitrarily large number of customers.

• Arrivals to the queue occur according to a Poisson process with rate λ > 0. That is, let An be the arrival
instant of the nth customer, then the sequence of inter-arrival times ξ is i.i.d. exponentially distributed with
rate λ .

• There is a single server and the service time of nth customer is denoted by a random variable σn. The
sequence of service times σ : Ω→ RN

+ is i.i.d. exponentially distributed with rate µ > 0, independent of
the Poisson arrival process.

• We assume that customers join the tail of the queue, and hence begin service in the order that they arrive
first-in-queue-first-out (FIFO).

Let Xt denote the number of customers in the system at time t ∈ R+, where “system” means the queue plus the
service area. For example, Xt = 2 means that there is one customer in service and one waiting in line. Due
to continuous distributions of inter-arrival and service times, a transition can only occur at customer arrival or
departure times. Further, departures occur whenever a service completion occurs. Let Dn denote the nth departure
from the system. At an arrival time An, the number LAn = LA−n + 1 jumps up by the amount 1, whereas at a
departure time Dn, then number LDn = LD−n −1 jumps down by the amount 1.

For the M/M/1 queue, one can argue that L : Ω→Z
R+
+ is a CTMC on the state space Z+. We will soon see

that a stable M/M/1 queue is time-reversible.
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1.2.1 Transition rates

Given the current state {Xt = i}, the only transitions possible in an infinitesimal time interval are (a) a single
customer arrives, or (b) a single customer leaves (if i ≥ 1). It follows that the infinitesimal generator for the
CTMC {Xt}t is

Qi j =


λ , j = i+ 1,
µ , j = i−1,
0, | j− i|> 1.

Since λ , µ > 0, this defines an irreducible CTMC.

1.2.2 Equilibrium distribution and reversibility

We can define the load ρ = λ

µ
, and find the stationary distribution π by solving the global balance equation π = πQ

which gives

πn−1Qn−1,n +πn+1Qn+1,n = −πnQnn, π1Q1,0 = −π0Q00.

Taking the discrete Fourier transform Π(z) = ∑n∈Z+
znπn of the distribution π , we get zλ Π(z)+ z−1µ(Π(z)−

π(0)) = (λ + µ)Π(z)−µπ(0). That is, Π(z) = π(0)/(1− zρ). Hence it follows from ∑n∈Z+
π(n) = 1 that

π(n) = (1−ρ)ρn, n ∈Z+.

Example 1.3 (M/M/1 queue). The M/M/1 queue’s generator defines a birth-death process. Hence, if it is
stationary, then it must be time-reversible, with the equilibrium distribution π satisfying the detailed balance
equations πnλ = πn+1µ for each n∈Z+. This yields πn+1 = ρπn for the system load ρ = Eσ1/Eξ1 = λ /µ .
Since ∑i≥0 π = 1, we must have ρ < 1, such that πn = (1− ρ)ρn for each n ∈ Z+. In other words, if
λ < µ , then the equilibrium distribution of the number of customers in the system is geometric with parameter
ρ = λ /µ . We say that the M/M/1 queue is in the stable regime when ρ < 1.

Corollary 1.4. The number of customers in a stable M/M/1 queueing system at equilibrium is a reversible
Markov process.

Further, since M/M/1 queue is a reversible CTMC, the following theorem follows.

Theorem 1.5 (Burke). Departures from a stable M/M/1 queue are Poisson with same rate as the arrivals.
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