Lecture-20: Queues

1 Continuous time queues

A queueing system consists of arriving entities buffered to get serviced by a collection of servers with finite service capacity. The notation $A / T / N / B / S$ for a queueing system indicates
A : inter-arrival time distribution,
T : service time distribution,
N : number of servers,
$B:$ buffer size, or the maximum number of entities waiting and in service at any time (∞ by default),
S : queueing service discipline (FIFO by default).
Typical inter-arrival times are general independent (GI) so that number of arrivals is a renewal counting process, memoryless (M) for Poisson arrivals, phase-type, or deterministic (D). Similarly, the typical service times are general independent (GI), memoryless (M) for exponential service times, phase-type, or deterministic (D). The number of servers could be one, finite, or countably finite. The buffer size is typically arbitrarily large, or equal to the number of servers. Service discipline is usually first-come-first-served (FCFS), last-come-first-served (LCFS), or priority-ordered with or without pre-emption, or processor-shared (PS).

Typical performance metrics of interest are the sojourn times of each arriving entity, and number of entities in the queue as seen by the arriving/departing customer or by the system.

1.1 GI/G/1 queue

The nth entity arrives at instant A_{n} and requires service σ_{n}, and the duration between $(n+1)$ th and nth entity is denoted by $\xi_{n}=A_{n}-A_{n-1}$. The random inter-arrival sequence $\xi: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ and random service times sequence $\sigma: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ are assumed to be i.i.d. and independent. The arrival point process $A: \mathbb{R}_{+}^{\mathbb{N}}$ is assumed to be simple, that is $P\left\{\xi_{1}>0\right\}=1$, and hence this point process is a renewal process. The arrival rate is denoted by $\lambda \triangleq \frac{1}{\mathbb{E} \xi_{1}}$, and the service rate is denoted by $\mu \triangleq \frac{1}{\mathbb{E} \sigma_{1}}$. The average load on the system is denoted by $\rho \triangleq \frac{\mathbb{E} \sigma_{n}}{\mathbb{E} \xi_{n}}=\frac{\lambda}{\mu}$.

The number of arrivals and departures in a time duration $I \subseteq \mathbb{R}_{+}$are denoted by $N_{A}(I)$ and $N_{D}(I)$ respectively. The departure instant and waiting time for the start of the service of the nth customer are denoted by D_{n} and W_{n} respectively. The number of entities in the buffer at time t is denoted by L_{t}, and hence $L: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$is a random process. Defining $(x)_{+} \triangleq \max \{x, 0\}$, and letting $W_{0}=w$, we can write the waiting time for $(n+1)$ th customer before it receives service, as

$$
W_{n+1}=\left(W_{n}+\sigma_{n}-\xi_{n+1}\right)_{+}, n \in \mathbb{N} .
$$

We define nth step-size $X_{n}=\sigma_{n}-\xi_{n+1}$ for a random walk $S_{n}=\sum_{i=1}^{n} X_{i}$ with $S_{0}=0$. For the random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{Z}_{+}}$, the history of until nth step is denoted by $\mathcal{F}_{n} \triangleq \sigma\left(\sigma_{1}, \ldots, \sigma_{n}, \xi_{1}, \ldots, \xi_{n+1}\right)$. In terms of the i.i.d. step-size sequence $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$, we can write $W_{n+1}=\left(W_{n}+X_{n}\right)_{+}$for each $n \in \mathbb{N}$. From the independence of sequence $\left(\left(\sigma_{n}, \xi_{n+1}\right): n \in \mathbb{N}\right)$, it follows that reflected random walk $W: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is a Markov process.

Theorem 1.1 (Poisson arrivals see time averages (PASTA)). At any time t, we denote a system state by X_{t}. Let $B \in \mathcal{B}\left(\mathbb{R}_{+}\right)$a Borel measurable set, then

$$
\bar{\tau}_{B} \triangleq \lim _{t \in \mathbb{R}_{+}} \frac{1}{t} \int_{0}^{t} \mathbb{1}_{\left\{X_{u} \in B\right\}} d u=\lim _{n \in \mathbb{N}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left\{X_{t_{i}^{-}} \in B\right\}} \triangleq \bar{c}_{B} .
$$

Proof. We will show the special case when $X_{t}=L_{t}$ is the number of customers in the system at time t, and $B=\{n\}$. Using continuity of probability, we define for $n \in \mathbb{Z}_{+}$

$$
\pi_{n} \triangleq \lim _{t \rightarrow \infty} P\left\{L_{t}=n\right\}, \quad \alpha_{n} \triangleq \lim _{k \in \mathbb{N}} P\left\{L_{t_{k}^{-}}=n\right\}=\lim _{k \in \mathbb{N}} \lim _{h \downarrow 0} P\left\{L_{t_{k}-h}=n \mid L_{t_{k}}=n+1\right\} .
$$

Using independent increment property of Poisson arrivals, Baye's rule, and the fact that $\lim _{k \in \mathbb{N}} t_{k}=\infty$, we can write the second limiting probability as

$$
\alpha_{n}=\lim _{k \in \mathbb{N}} \lim h \downarrow 0 \frac{P\left\{L_{t_{k}-h}=n, N_{A}\left(t_{k}-h, t_{k}\right]=1\right\}}{P\left\{N_{A}\left(t_{k}-h, t_{k}\right]=1\right\}}=\lim _{t \rightarrow \infty} P\left\{L_{t}=n\right\}=\pi_{n} .
$$

Theorem 1.2 (Little's law). For $a G I / G / 1$ queue with $\rho<1$,

$$
\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} L_{u} d u}{t}=\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{N_{A}(0, t]}\left(W_{i}+\sigma_{i}\right)}{N_{A}(0, t]} .
$$

Proof. The key observation follows from looking at the piecewise constant curve L_{t}, to conclude

$$
\sum_{i=1}^{N_{D}(0, t]}\left(W_{i}+\sigma_{i}\right) \leq \int_{0}^{t} L_{u} d u \leq \sum_{i=1}^{N_{A}(0, t]}\left(W_{i}+\sigma_{i}\right)
$$

Further, for a stable queue we have $\lim _{t \rightarrow \infty} \frac{N_{D}(0, t]}{t}=\lim _{t \rightarrow \infty} \frac{N_{A}(0, t]}{t}$. Combining these two results, the theorem follows from renewal reward theorem.

1.2 M/M/1 queue

We consider the simplest continuous time queueing system with Poisson arrivals of homogeneous rate $\lambda=\frac{1}{\mathbb{E} \xi_{1}}$, independent i.i.d. exponential service time of rate $\mu=\frac{1}{\mathbb{E} \sigma_{1}}$ for each arrival, single server with infinite buffer size, and FCFS service discipline. It is clear that $L: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$is a right continuous process with left limits, and is piece-wise constant. We observe that L_{t} remains unchanged in the time $t+\left[0, \min \left\{Y_{A}(t), Y_{S}(t)\right\}\right)$. Further, L_{t} can have at most one transition in an infinitesimally small interval $(t, t+h]$ with high probability, since the probability of two or more transitions is of order $o(h)$. Further, we observe that L_{t} can have a unit increase if $Y_{A}(t)<Y_{S}(t)$ and a unit decrease otherwise, for $L_{t} \geqslant 1$. If $L_{t}=0$, there can be no service and L_{t} remains 0 until $t+Y_{A}(t)$, and has a unit increase at time $t+Y_{A}(t)$.

Since the arrival and the service times are memoryless, the residual time for next arrival $Y_{A}(t)$ is identically distributed to ξ_{1} and independent of past \mathcal{F}_{t} and residual service time for entity in service $Y_{S}(t)$ is identically distributed to σ_{1} and independent of past \mathcal{F}_{t}. It follows that L is a homogeneous CTMC, and we can write the corresponding generator matrix as

$$
Q(n, m)=\lambda \mathbb{1}_{\{m-n=1\}}+\mu \mathbb{1}_{\{n-m=1, m \geqslant 0\}} .
$$

We observe that $Q(n, n)=-(\lambda+\mu)$ for $n \in \mathbb{N}$ and $Q(0,0)=-\lambda$.
The $\mathrm{M} / \mathrm{M} / 1$ queue is the simplest and most studied models of queueing systems. We assume a continuous-time queueing model with following components.

- There is a single queue for waiting that can accommodate arbitrarily large number of customers.
- Arrivals to the queue occur according to a Poisson process with rate $\lambda>0$. That is, let A_{n} be the arrival instant of the nth customer, then the sequence of inter-arrival times ξ is i.i.d. exponentially distributed with rate λ.
- There is a single server and the service time of nth customer is denoted by a random variable σ_{n}. The sequence of service times $\sigma: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is i.i.d. exponentially distributed with rate $\mu>0$, independent of the Poisson arrival process.
- We assume that customers join the tail of the queue, and hence begin service in the order that they arrive first-in-queue-first-out (FIFO).

Let X_{t} denote the number of customers in the system at time $t \in \mathbb{R}_{+}$, where "system" means the queue plus the service area. For example, $X_{t}=2$ means that there is one customer in service and one waiting in line. Due to continuous distributions of inter-arrival and service times, a transition can only occur at customer arrival or departure times. Further, departures occur whenever a service completion occurs. Let D_{n} denote the nth departure from the system. At an arrival time A_{n}, the number $L_{A_{n}}=L_{A_{n}^{-}}+1$ jumps up by the amount 1 , whereas at a departure time D_{n}, then number $L_{D_{n}}=L_{D_{n}^{-}}-1$ jumps down by the amount 1 .

For the M/M/1 queue, one can argue that $L: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$is a CTMC on the state space \mathbb{Z}_{+}. We will soon see that a stable $\mathrm{M} / \mathrm{M} / 1$ queue is time-reversible.

1.2.1 Transition rates

Given the current state $\left\{X_{t}=i\right\}$, the only transitions possible in an infinitesimal time interval are (a) a single customer arrives, or (b) a single customer leaves (if $i \geq 1$). It follows that the infinitesimal generator for the CTMC $\left\{X_{t}\right\}_{t}$ is

$$
Q_{i j}= \begin{cases}\lambda, & j=i+1 \\ \mu, & j=i-1 \\ 0, & |j-i|>1\end{cases}
$$

Since $\lambda, \mu>0$, this defines an irreducible CTMC.

1.2.2 Equilibrium distribution and reversibility

We can define the load $\rho=\frac{\lambda}{\mu}$, and find the stationary distribution π by solving the global balance equation $\pi=\pi Q$ which gives

$$
\pi_{n-1} Q_{n-1, n}+\pi_{n+1} Q_{n+1, n}=-\pi_{n} Q_{n n}, \quad \pi_{1} Q_{1,0}=-\pi_{0} Q_{00}
$$

Taking the discrete Fourier transform $\Pi(z)=\sum_{n \in \mathbb{Z}_{+}} z^{n} \pi_{n}$ of the distribution π, we get $z \lambda \Pi(z)+z^{-1} \mu(\Pi(z)-$ $\pi(0))=(\lambda+\mu) \Pi(z)-\mu \pi(0)$. That is, $\Pi(z)=\pi(0) /(1-z \rho)$. Hence it follows from $\sum_{n \in \mathbb{Z}_{+}} \pi(n)=1$ that

$$
\pi(n)=(1-\rho) \rho^{n}, n \in \mathbb{Z}_{+} .
$$

Example 1.3 ($M / M / 1$ queue). The $M / M / 1$ queue's generator defines a birth-death process. Hence, if it is stationary, then it must be time-reversible, with the equilibrium distribution π satisfying the detailed balance equations $\pi_{n} \lambda=\pi_{n+1} \mu$ for each $n \in \mathbb{Z}_{+}$. This yields $\pi_{n+1}=\rho \pi_{n}$ for the system load $\rho=\mathbb{E} \sigma_{1} / \mathbb{E} \xi_{1}=\lambda / \mu$. Since $\sum_{i \geq 0} \pi=1$, we must have $\rho<1$, such that $\pi_{n}=(1-\rho) \rho^{n}$ for each $n \in \mathbb{Z}_{+}$. In other words, if $\lambda<\mu$, then the equilibrium distribution of the number of customers in the system is geometric with parameter $\rho=\lambda / \mu$. We say that the $\mathrm{M} / \mathrm{M} / 1$ queue is in the stable regime when $\rho<1$.

Corollary 1.4. The number of customers in a stable $M / M / 1$ queueing system at equilibrium is a reversible Markov process.

Further, since M/M/1 queue is a reversible CTMC, the following theorem follows.
Theorem 1.5 (Burke). Departures from a stable M/M/I queue are Poisson with same rate as the arrivals.

