Lecture-21: Reversible Processes and Queues

1 Equilibrium distribution of M/M/1 Queue

Recall the global balance equations for equilibrium distribution 7 € [0, 1]%+ are
—mA +mu =0, 1A —m(A+p)+mu=0, kelN.

Recognizing that 7 is a one-sided countably infinite sequence, we denote the discrete Fourier transform or the z-
transform of the distribution 7 € [0,1]%+ as
H(Z) = Z 7'Ekzk.

keZ

Using this notation, we can compute

(l -I—,I.L) Z Ekzk =2 Z ﬂk_lzk-i-li Z ﬂk+1zk.
keN keN kelN

Using the definition of I1(z), we can re-write this as
(A + ) (T1(z) = ) = Azl1(2) + pz ' (11(2) — Mo —zm).
Since m; = myp where p = %, we can re-arrange the terms to get

4

o)== py

Inverting the z-transform, we get
m = mp*, keNN.

2 Reversed Processes

Definition 2.1. Let X : Q) — X7 be a stochastic process with index set 7 being an additive ordered group such as R
or Z. Then, X7 : Q) — X7 defined as X7(¢) £ X (7t —1) for all t € T is the reversed process for some 7 € T.

Remark 1. Note that a reversed process, doesn’t have to have the identical distribution to the original process. For a
reversible process X, the reversed process would have identical distribution.

Lemma 2.2. IfX : QO — X7 is a Markov process, then the reversed process X is also Markov for any © € T.

Proof. Let ¥, = o(X(s) : s <t) denote the history of the process until time 7. From the Markov property of process
X, we have for any event B € F;,,, states x,y € X and times u,s >0

P(BI{X, =y, Xi—s = x}) = P(B| {X; = y}).
Markov property of the reversed process follows from the observation, that

P =2} 3 = yj) = P 20K 2 08) POy =k = B, =0 =) gy, — g3, )

O



Remark 2. Even if the forward process X is time-homogeneous, the reversed process need not be time-homogeneous.
For a non-stationary time-homogeneous Markov process, the reversed process is Markov but not necessarily time-
homogeneous.

Theorem 2.3. IfX : Q) — XR is an irreducible, positive recurrent, stationary, and homogeneous Markov process with
transition kernel P and equilibrium distribution T, then the reversed Markov process X7 : Q) — XR is also irreducible,
positive recurrent, stationary, and homogeneous with the same equilibrium distribution 7 and transition kernel P given

INOE %P)x(t) forallt € T, and states x,y € X.
X

Further, for any finite sequence x € X", we have
Pevo X, = xi} = P {X = xaiva } -

Proof. We can check that Pisa probability transition kernel, since ISXy >0forallt € T and

Y Py() = ¥ mBulr) = 1.

yeX X yeX

Further, we see that 7 is an invariant distribution for P, since for all states x, yeX

Y mPy(t) =m ) Pult) =m,.

xeX xeX

We next wish to show that P defined in the Theorem, is the probability transition kernel for the reversed process. Since
the forward process is stationary and time-homogeneous, we can write the probability transition kernel for the reversed
process as

XTT_,H =x X, = y} _ Pr{X,—s =x,X =y} _ 7Py (0, 5)
P{XI, =y} Pr{X; =y} Ty

This implies that the reversed process is time-homogeneous and has the desired probability transition kernel. Further,
7 is the stationary distribution for the reversed process and is the marginal distribution for the reversed process at any
time ¢, and hence the reversed process is also stationary.

For an irreducible and positive recurrent Markov process with stationary distribution 7, we have 7, > 0 for each
state x € X. Since the forward process is irreducible, there exists a time ¢ > 0 such that Pyx(t) > 0 for states x,y € X,
and hence f’xy () > 0 implying irreducibility of the reversed process. From the Markov property of the underlying
processes and definition of P, we can write

PUSE oy =} {2, =y} = T

n—1 n—1
Pﬂ{th le,...,th :xn} = ﬂxl HPxiXiH (ti+1 —t,') = Ty, priﬂxi (ti+1 —l‘,') = ﬁﬂ{}?tl :xn,...,}?,n :xl}.
i=1 i=1
This follows from the fact that
ﬂlexlxz (12 _[1) = TEXZPXQXI (tz _tl)»

and hence we have
n—1 n—1

nxl H Px,-le (ti+1 - tl) = an HPXH»IXI (ti+1 - tl)
i=1 i=1

Let’s take T =1, + 11, then we have X7 = X (1, +; —t) and hence we have (X;,,....X;,....X,,) = (X7,....X" (1 +

th — ti), .. ,th). From the Markovity of the reversed process, we can write

i=1
n—1 n—1

= Ty, prn,,urlx,,,,- (tan—l _tn—i) = Ty, priﬂx,-(ti—%l - ti)-
i=1 i=1

For any finite n € IN, we see that the joint distributions of (X;,,...,X;,) and (Xs4,, ..., X+, ) are identical forall s € T,
from the stationarity of the process X. It follows that X is also stationary, since (X,,,...,X;,) and (Xy14,.- ., Xsts)
have the identical distribution. O



Corollary 2.4. If X : QO — X% is an irreducible, stationary, homogeneous Markov chain with transition matrix P
and equilibrium distribution T, then the reversed chain X© : Q0 — X% is an irreducible stationary, time homogeneous
Markov chain with the same equilibrium distribution T, and transition matrix P given by

« Tty
ny = ;x})yx.

Corollary 2.5. If X : O — XR is an irreducible, stationary, homogeneous Markov process with generator matrix Q
and equilibrium distribution 7, then the reversed process X* : Q) — X® is also an irreducible, stationary, homogeneous
Markov process with same equilibrium distribution T and generator matrix Q such that

N Ty
Qxy = ;iny-
Proof. O

Corollary 2.6. Consider irreducible Markov chain with transition matrix P : X x X — [0,1]. If one can find a non-
negative vector o € [0,1]% and other transition matrix P* : X x X — [0,1] such that ¥ycy 0 = 1 and satisfies the
detailed balance equation

0Py = P,

yx°

then o is the stationary probability vector of P and P* is the transition matrix for the reversed chain.

Proof. Summing o;P;; = ochj*i over i gives, ¥,; 0;F;; = o;. Hence q;s are the stationary probabilities of the forward
(Z'P,'j

and reverse process. Since Pj; = ==+, P; are the transition probabilities of the reverse chain. O
]

Corollary 2.7. Let Q : X x X — R denote the rate matrix for an irreducible Markov process. If we can find Q* :
X x X — [0,1] and a vector w € [0,1]* such that ¥ ycx T = 1 and for y # x € X, we have

nxQxy = nyQ;xs and Z Qxy = Z Q;ys
y7#x yFx

then QF is the rate matrix for the reversed Markov chain and 7 is the equilibrium distribution for both processes.

3 Applications of Reversed Processes

3.1 Truncated Markov Processes

Definition 3.1. For a Markov process X : () — XR, and a subset A C X the boundary of A is defined as
JAE {y¢A:Qy >0, forsomexcA}.

Definition 3.2. Consider a transition rate matrix Q : X x X — IR on the countable state space X. Given a nonempty
subset A C X, the truncation of Q to A is the transition rate matrix QA :A XA — R, where for all x,y € A

QA _ Qxy, y #xa
* - ZzeA\{x} Ow, y==x.

Proposition 3.3. Suppose X : Q — XR is an irreducible, time-reversible CTMC on the countable state space X, with
generator Q : X X X — R and stationary probabilities € |0, 1]JC . Suppose the trunctated Markov process to a set of
states A C X is irreducible. Then, any stationary CTMC with state space A and generator Q* is also time-reversible,
with stationary probabilities

T
o= r yEA.
ZxEAnX

Proof. Tt is clear that 7 is a distribution on state space A. We must show the reversibility with this distribution 74.
That is, we must show for alli,j € A

E?Qxy = 71';‘ny.

However, this is true since the original chain is time reversible. [



Example 3.4 (Limiting waiting room: M/M/1/K). Consider a variant of the M/M/1 queueing system that has
a finite buffer capacity of at most K customers. Thus, customers that arrive when there are already K customers
present are ‘rejected’. It follows that the CTMC for this system is simply the M/M/1 CTMC truncated to the state
space {0,1,...,K}, and so it must be time-reversible with stationary distribution
_ P ;
=P 0<i<k.
Y j=0

Example 3.5 (Two queues with joint waiting room). Consider two independent M/M/1 queues with arrival and
service rates A; and ; respectively for i € [2]. Then, joint distribution of two queues is

m(m.m) = (1=p1)py" (1=p2)p5*, nim€Z;.

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R waiting customer
then it leaves. In this case,

ny np
P1 P T3 s (nl,n2)€A§Z+><Z+.

(ny,ny) = o
( ! 2) Z(ml,mz)eApllpz



