
Lecture-23 : Martingales

1 Martingales
Definition 1.1. Let (Ω,F,P) be a probability space. A filtration is an increasing sequence of σ -fields denoted
by F• = (Fn ⊆ F : n ∈N), with nth σ -field denoted by Fn.

Definition 1.2. A random sequence X : Ω→RN of random variables is said to be adapted to the filtration F• if
σ(Xn) ⊆ Fn for all n ∈N.

Definition 1.3. A discrete stochastic process (Xn, n ∈N) is said to be a martingale with respect to the filtration
F• if for each n ∈N,

i absolute integrability. E[|Xn|] < ∞,

ii adaptability. σ(Xn) ⊆ Fn,

iii unbiasedness. E[Xn+1|Fn] = Xn.

If the equality in third condition is replaced by≤ or≥, then the process is called supermartingale or submartin-
gale, respectively.

Definition 1.4. For a discrete stochastic process X : Ω→RN, its natural filtration is defined as

Fn , σ(X1, . . . ,Xn).

Corollary 1.5. For a martingale X adapted to a filtration F•, we have

EXn = EX1, n ∈N.

Example 1.6 (Simple random walk). Let ξ : Ω→ RN be a sequence of independent random variables
with mean Eξi = 0 and E|ξi| < ∞ for each i ∈N. Consider the random sequence X : Ω→RN and natural
filtration F• of random sequence ξ , such that Xn , ∑

n
i=1 ξi and Fn = σ(ξ1, . . . ,ξn) for each n ∈N.

Then, the random sequence X is a martingale with respect to filtration F•. This follows, since EXn = 0,
and from the linearity of expectation and the finiteness of finitely many individual terms, the absolute sum
E |Xn|6 ∑

n
i=1 E |ξ |i < ∞. Further, we have

E[Xn+1|Fn] = E[Xn + ξn+1|Fn] = Xn.

Example 1.7 (Product martingale). Let ξ : Ω→RN be a sequence of independent random variables with
mean Eξi = 1 and E|ξi| < ∞ for each i ∈N. Consider the random sequence X : Ω → RN and natural
filtration F• of random sequence ξ , such that Xn , ∏

n
i=1 ξi and Fn = σ(ξ1, . . . ,ξn) for each n ∈N. Then, the

random sequence X is a martingale with respect to filtration F•. This follows, since EXn = 1, and from the
independence and finiteness of finitely many individual terms the absolute product E |Xn| = ∏

n
i=1 Eξi < ∞.

Further, we have
E[Xn+1|Fn] = E[Xnξn+1|Fn] = Xn.
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Example 1.8 (Branching process). Consider a population where each individual i can produce an indepen-
dent random number of offsprings Zi in its lifetime, given by a common distribution P : Z+ → [0,1] and
mean µ = ∑ j∈N jPj. Let Xn denote the size of the nth generation, which is same as the number of offsprings
generated by (n−1)th generation. The discrete stochastic process X : Ω→ZN

+ is called a branching process.
Let X0 = 1 and consider the natural filtration F• of X such that Fn = σ(X1, . . . ,Xn). Then,

Xn =
Xn−1

∑
i=1

Zi.

Conditioning on Xn−1 yields, E[Xn|σ(Xn−1)] = µXn−1 and hence by induction we get E[Xn] = µn. Consider
a positive random sequence Y : Ω→ RN

+ defined by Yn ,
Xn
µn for each n ∈N. Then Y is a martingale with

respect to filtration F• because E[Yn] = 1, the expectation of absolute value E |Yn|= EYn = 1, and

E[Yn+1|Fn] =
1

µn+1 E[
Xn

∑
i=1

Zi|Fn] =
Xn

µn = Yn.

Example 1.9 (Doob’s Martingale). Consider an arbitrary random sequence Y : Ω→ RN with associated
natural filtration F•, and an arbitrary random variable Z : Ω → R such thatE[|Z|] < ∞. Then, a random
sequence X : Ω→RN defined by Xn , E[Z|Fn] for each n ∈N, is a martingale. The integrability condition
can be directly verified, the sequence X is adapted to F• by definition of conditional expectation, and by the
tower property of conditional expectation

E[Xn+1|Fn] = E[E[Z|Fn+1]|Fn] = E[Z|Fn] = Xn.

Example 1.10 (Centralized Doob sequence). For any sequence of random variables X : Ω→ RN and its
natural filtration F•, the random variable Xi−E[Xi|Fi−1] is zero mean for each i ∈N. Hence, the centralized
zero mean sequence Z : Ω→ RN defined by Zn , ∑

n
i=1(Xi−E[Xi|Fi−1]) for each n ∈N, is a martingale

with respect to the filtration F•, provided E|Zn| < ∞. From the definition of conditional expectation and
the sequence Z, it follows that Zn is adapted to Fn. Further, from the linearity and the tower property of
conditional expectation, we have

E[Zn+1|Fn] = E[Zn +Xn−E[Xn|Fn−1]|Fn] = Zn +E[Xn−E[Xn|Fn−1]] = Zn.

Lemma 1.11. Consider a filtration F• = (Fn ⊆F : n∈N) on the probability space (Ω,F,P). Consider a random
sequence X : Ω→RN which is a martingale with respect to the filtration F•, and a convex function f : R→R.
Then, random sequence Y : Ω→ RN defined by Yn , f (Xn) for each n ∈N, is a submartingale with respect to
the filtration F•.

Proof. The result is a direct consequence of Jensen’s inequality for conditional expectations, since

E[ f (Xn+1)|Fn] > f (E[Xn+1|Fn]) = f (Xn).

Corollary 1.12. Consider a random sequence X : Ω→ RN defined on the probability space (Ω,F,P), with its
natural filtration F•. Let a ∈R be a constant, and consider two random sequences Y : Ω→RN

+ and Z : Ω→RN

generated by X, such that for each n ∈N,

Yn , (Xn−a)+, Zn , Xn∧a.

i If X is a submartingale with respect to F•, then so is Y with respect to F•.

ii If X is a supermartingale with respect to F•, then so is Z with respect to F•.
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1.1 Stopping Times
Consider a discrete filtration F• = (Fn : n ∈Z+).

Definition 1.13. A positive integer valued, possibly infinite, random variable N is said to be a random time with
respect to the filtration F•, if the event {N = n} ∈ Fn for each n ∈N. If P{N < ∞}= 1, then the random time N
is said to be a stopping time.

Definition 1.14. A random sequence H : Ω→RN is predictable with respect to the the filtration F•, if σ(Hn)⊆
Fn−1 for each n ∈N. Further, we define

(H ·X)n ,
n

∑
m=1

Hm(Xm−Xm−1).

Theorem 1.15. Consider a supermartingale sequence X : Ω→RN and a predictable sequence H : Ω→RN
+ with

respect to a filtration F•, where each Hn is non-negative and bounded. Then the random sequence Y : Ω→ RN

defined by Yn = (H ·X)n for each n ∈N is a super martingale w.r.t. F•.

Proof. It follows from the definition,

E[(H ·X)n+1|Fn] = E[Hn+1(Xn+1−Xn)+ (H ·X)n|Fn] = Hn+1(E[Xn+1|Fn]−Xn)+ (H ·X)n 6 (H ·X)n.

1.2 Stopped process
Definition 1.16. Consider a discrete stochastic process X : Ω → RN adapted to a discrete filtration F•. Let
T : Ω→N be a random time for the filtration F•, then the stopped process Y : Ω→ RN is defined for each
n ∈N as

Yn , XT∧n = Xn1{n6T}+XT1{n>T}.

Proposition 1.17. Let X : Ω→ RN be a martingale with a discrete filtration F•. If T : Ω→N is an integer
random time for the filtration F•, then the stopped process (XT∧n : n ∈N) is a martingale.

Proof. Consider a random sequence H : Ω→ {0,1}N defined by Hn , 1{n6T} for each n ∈N. Then H is a
non-negative and bounded sequence. Further H is predictable with respect to F•, since the event

{n 6 T}= {T > n−1}= {T 6 n−1}c = (∪n−1
i=0 {T = i})c = ∩n−1

i=0 {T 6= i} ∈ Fn−1.

In terms of the non-negative, predictable, and bounded sequence H, we can write the stopped process as

XT∧n = X0 +
T∧n

∑
m=1

(Xm−Xm−1) = X0 +
n

∑
m=1

1{m6T}(Xm−Xm−1) = X0 +(H ·X)n.

Therefore, from the previous theorem we have EXT∧n = EXT∧1 = EX1.

Remark 1. For any martingale X : Ω→RN and a stopping time T : Ω→N adapted to F•, we have EXT∧n =EX1,
for all n ∈N. It is immediate that stopped process converges almost surely to XT , i.e.

P
(

lim
n∈N

XT∧n = XT

)
= 1.

We are interested in knowing under what conditions will we have convergence in mean.

Theorem 1.18 (Martingale stopping theorem). Let X : Ω→RN be a martingale and T : Ω→N be a stopping
time adapted to a discrete filtration F•. Then, the random variable XT is integrable and the stopped process XT∧n
converges in mean to XT , i.e.

lim
n∈N

EXT∧n = EXT = EX1,

if either of the following conditions holds true.

(i) T is bounded,

(ii) XT∧n is uniformly bounded,

(iii) ET < ∞, and for some real positive K, we have supn∈N E[|Xn+1−Xn||Fn] < K.
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Proof. We show this is true for all three cases.

(i) Let K be the bound on T then for all n > K, we have XT∧n = XT , and hence it follows that

EX1 = EXT∧n = EXT , for all n > K.

(ii) Dominated convergence theorem implies the result.

(iii) Since T is integrable and XT∧n 6 |X1|+KT , we observe that XT∧n is bounded by an integrable random
variable. The result follows from dominated convergence theorem.

Corollary 1.19 (Wald’s Equation). If T is a stopping time for the discrete i.i.d.random sequence X : Ω→RN

with E|X |< ∞ and ET < ∞, then

E
T

∑
i=1

Xi = ET EX .

Proof. Let µ = EX and define a random sequence Z : Ω→ RN such that Zn , ∑
n
i=1(Xi− µ) for each n ∈N,

Then Z is a martingale adapted to natural filtration of X , and hence from the Martingale stopping theorem, we
have EZT = EZ1 = 0. However, we observe that

E[ZT ] = E
T

∑
i=1

Xi−µET .

Observe that condition (iii) for Martingale stopping theorem to hold can be directly verified. Hence the result
follows.

4


	Martingales
	Stopping Times
	Stopped process


