Lecture-25: Martingale Concentration Inequalities

1 Introduction

Consider a probability space (Q,F,P) and a discrete filtration Fo = (F, C F:n € N). Let X : QO — RN be
discrete random process and stopping time N : () — IN, both adapted to the filtration F,.

Lemma 1.1. If X is a submartingale and N is a stopping time such that P{N < n} = 1 then
EX, < EXy < EX,.

Proof. 1t follows from optional stopping theorem that since N is bounded, E[Xy] > E[X;]. Now, since N is a
stopping time, we see that for {N = k}

E[X,|X1,....Xn,N = k] = E[X,|X1,.... X, N = k] = E[X,|X1,....X;] > X = Xn-
Result follows by taking expectation on both sides. O

Theorem 1.2 (Kolmogorov’s inequality for submartingales). If X is a non-negative submartingale, then for

anya>0
E[X,
P{max{X1,X2,.... Xy} >a} < [ "].
a

Proof. We define a stopping time
N2min{i€ [n]:X; >a}An<n.

It follows that, {max {X,...,X,} > a} = {Xy > a}. Using this fact and Markov inequality, we get

E|[X
P{max{X,,....X,} >a} = P{Xy >a} < Xv)
a
Since N < n is a bounded stopping time, result follows from the previous Lemma ??. O

Corollary 1.3. Let X be a martingale. Then, for a > O the following hold.

P{m X E||X,
{ aX{l 1|""’|Xn|}>a}< Hanl],
P{m E[Xx?

{ aX{|X1|’...,|Xn|}>a}< LG]'

Proof. The proof the above statements follow from and Kolmogorov’s inequality for submartingales, and by
considering the convex functions f(x) = |x| and f(x) = x°. O

Theorem 1.4 (Strong Law of Large Numbers). Ler S: Q — RN be a random walk with i.i.d. step size X having
finite mean . If the moment generating function M(t) = E[e"*n] for random variable X,, exists for all t € R, then

Sn
P< lim — = =1.

Proof. For a given € > 0, we define

Then, it is clear that g(0) = 1 and




Hence, there exists a value 7y > 0 such that g(#y) > 1. We now show that %" can be as large as |t 4 € only finitely

often. To this end, note that
{S”>y+g}c{etosn >g(t0)”} (1)
n = - M(to)" ~
£/05n n o eoXi

However, ¥, 2 -~ =[], £ is a product of independent non negative random variables with unit mean, and
M" (1) =1 M(1)

hence is a non-negative martingale with sup, EY,, = 1. By martingale convergence theorem, the limit lim,cN Y,

exists and is finite.

Since g(fp) > 1, it follows from (??) that

n

S,
P { — > U+ ¢ for an infinite number of n} =0.
n

Similarly, defining the function f(z) = e;f;(;; " and noting that since f(0) =1 and f(0) = —e, there exists a value

fo < 0 such that f(#p) > 1, we can prove in the same manner that

S
P { =% < u — ¢ for an infinite number of n} =0.
n

Hence, result follows from combining both these results, and taking limit of arbitrary € decreasing to zero. O

Definition 1.5. A discrete random process X : Q) — RN with distribution function F,, £ Fx, foreach n € IN, is
said to be uniformly integrable if for every € > 0, there is a y, such that for each n € IN

]E[|Xn| ]]'{‘Xn‘>yg}] = / |x|dF;1(x) <E.

x| >ye
Lemma 1.6. If X : O — RN is uniformly integrable then there exists finite M such that E|X,| <M foralln € N.

Proof. Let y; be as in the definition of uniform integrability. Then

E|X,| = / WdF () + [ [l (x) <+ 1.
x|<y x|>y1

O

1.1 Generalized Azuma Inequality

Lemma 1.7. For a zero mean random variable X with support [—a, B] and any convex function f

EBrx) < oot 2onp)
o+p a+p
Proof. From convexity of f, any point (X,Y) on the line joining points (—a, f(—a) and (B, f(B)) is
r= -0+ (o TELE S i),
Result follows from taking expectations on both sides. O

Lemma 1.8. For 6 € [0,1] and 8 21— 6, we have 0% + B0 < /8,

Proof. Let & =26 —1 and B = 3, then we need to show that cosh  + asinh 8 < e®B+B*/2 This inequality is
true for |o¢| = 1 and sufficiently large 3. Therefore, it suffices to show this for f < M for some M. We take the

partial derivative of f(ca,) = coshf + asinh  — e*P +B2/2 with respect to variables a, 8 and equate it to zero
to get the stationary point,

sinh 8 + accoshf = (a —i—ﬁ)e“’”ﬁz/z, sinh 8 = BeaBJrﬁz/z.

If B # 0, then the stationary point satisfies 1 + acothf = 1+ %, with the only solution being 8 = tanh 3. By

Taylor series expansion, it can be seen that there is no other solution to this equation other than 8 = 0. Since
f(e,0) = 0, the lemma holds true. O



Proposition 1.9. Let X be a zero-mean martingale with respect to filtration JF,, such that for each n € N
<Xy — X1 < B

Then, for any positive values a and b

P{X, > a+ bn for some n} < exp( (ag_r_l%)z)'

Proof. Let Xy = 0 and ¢ > 0, then we define a random sequence W : Q) — RN adapted to filtration J,, such that
W, A ec(X,,—a—bn) — anle_Cbec(X”_X”’”, neZ.,.

We will show that W is a supermartingale with respect to the filtration F,. It is easy to see that 6(W,) € F, for
each n € IN. Further, we observe

E[W,|Fy_1] = Wp_1e PE[e X %15, ],

Using conditional Jensen’s inequality for convex function f(x) = ¢“* and the fact that E[X,, — X,,—1|F,—1] = 0, we

: _ o
obtain for 6 = @+B)
(o oy B
E c(Xn—Xp—1) o <ﬁ€ — c(a+p)o c(a+B)6 &° (OH-B)
e |Fr—1] T Be + O¢

The second inequality follows from previous lemma with x = c(a + f3). Fixing the value ¢ = 8b/(a + ﬁ)z, we

obtain 2 s
. c(a+p)
]E[VV,,|3~”71] <W,_ye cbt 8 = Wn—1.

Thus, W is a supermartingale. For a fixed positive integer k, define the bounded stopping time N by
N=min{n€ [k]: X, > a+bn} Ak.

Now, using Markov inequality and optional stopping theorem, we get

8ab

P{XN a "—bN} P{WN } < ]E[WN] < IE,[W()] = eica = ei (OH—B)z .
But the above inequality is equivalent to

P{X, > a+ bn for some n < k} < e*S“b/(‘Hﬁ)

Since, the choice of k was arbitrary, result follow from letting k — oo. O

Theorem 1.10 (Generalized Azuma inequality). Let X be a zero-mean martingale, such that —a < X, — X;—1 <
B for all n € IN. Then, for any positive constant ¢ and integer m

_ 2mc?
P{X, > nc for somen > m} <e (@B
2

2mc

P{X, < —nc for somen>m} <e (e,
Proof. Observe that if there is an n such that n > m and X, > nc then for that n, we have X, > nc > 5 + 5. Using
this fact and previous proposition for a = 5 and b = 5, we get
8%%
mec ¢ -
P{X, > nc for some n > m }gP{Xn>7+§)nf0rsomen}<e (a+B)?
This proves first inequality, and second inequality follows by considering the martingale —X. O



