Lecture-28: GI/GI/1 Queues

1 GI/GI/1 Queueing Model

Consider a GI/GI /1 queue. Customers arrive in accordance with a renewal process having an arbitrary inter-
arrival distribution F, and the service time for each customer is i.i.d. with a common distribution G. We assume
that the service discipline is FCFS. We denote the random i.i.d. inter-arrival sequence by X : Q0 — RN, and the
random i.i.d. service time sequence by Y : () — IR]IJ:I. Then, the inter-arrival time between nth and (n+ 1)th
customer is X, 11, and the service time of customer 7 is Y;,.

Proposition 1.1 (Lindley’s equation). If we denote the waiting time (before service) for customer n in the queue
by W,,, then we have
W, = (Wn—l +Y,1 —Xn) v0, neN.

We denote Wy = Yy = 0, and the customer 1 arrives at time X.

Definition 1.2. For a GI/GI/1 queue with i.i.d. inter-arrival sequence X : () — IRHJ:I and independent i.i.d. service
time sequence ¥ : Q) — RN, we associate a random walk sequence S : Q) — RN with i.i.d. step-size sequence
U : O — RN such that

Uy 2Y,1—X,, neNN.

Proposition 1.3. Let W : Q) — ]R]I;I be the random waiting time sequence for customers in a GI/Gl/1 queue with
associated random walk S : Q) — RN, Then, we have for some ¢ >0

P{Wn>c}:P(UjE[n] {Sj>c}). 1)
Proof. From the Lindley’s recursion for waiting times and the definition of the associated random walk, we get
W, = max{0,W,_; +U,}.
Iterating the above relation with W, = 0, and using the definition of random walk S : QO — RN yields
W, = max{0,U, + max {0,W,_» + U,_1}} = max{0,U,,,U, + Uy—1 + Wy_2} = max{0,S, — Sp—1,...,Sn}.

Using the duality principle for exchangeable random sequence U, we can rewrite the following equality in distri-
bution W,, = max{0,Si,...,S,}. O

Corollary 1.4. IfIEU, > 0, then we have P{W., > c} = lim,,ey P{W,, > ¢} = 1 forall c € R.

Proof. Tt follows from Proposition ?? that P {W, > c} is non-decreasing in n. Hence, by monotone convergence
theorem, the limit exists and is denoted by P {W.. > ¢} £ lim,c P {W, > c}. Therefore, by continuity of proba-
bility and Eq. (??), we have

P{W. > c} = P{S, > c for some n}. 2)
If EU, = EY, — EX, 4 is positive, then by strong law of large numbers the random walk S will converge almost
surely to positive infinity. The above will also be true when E[U,] = 0, then the random walk is recurrent. O

Remark 1. It follows from this corollary, that the stability condition EY,, < [EX,,;| is necessary for the existence
of a stationary distribution.

Proposition 1.5 (Spitzer’s Identity). Let M, = max {0,S5,,S5,...,S,} for alln € N, then
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Proof. We can write M,, = ]l{Sn>0}Mn + ]l{s,lgo}Mn- If S, <0, then M,, = M,_;. That is,
Lis,<oyMn = Lis,<0yMn—1.
If S, > 0, then M,, = max {S},...,S, }. Therefore, we can rewrite the first term in decomposition, as

]1{5,,>0}Mn = ]l{S,,>O} maxSi = ]]‘{Sn>0} (Ul -+ max {O,Sz —S1,...,8, —Sl}).
i€[n]

Hence, taking expectation and using exchangeability of the i.i.d. sequence U, we get
EM,1s,~01] = E[Ui1s,~01] +E[M,_115,-0]-

Since U is an i.i.d. sequence and S,, = Y, U;, the tuple (U,-,Sn) has an identical joint distribution for all i € [n}

It follows that .
1 1 1
;]ES: = ;E[Sn]l{snwﬂ = Z]E Y Uilys,~01] = E[Uilgs, -0y
=1

Combining the above results, we obtain the following recursion
1
E[M,] = E[M, ] + 5, ].
Result follow from the fact that M; = S;". O

Remark 2. Since W, = M, in distribution, we have E[W,| = E[M,] =Y}_, %E[S,j]

2 Martingales for Random Walks
Proposition 2.1. Consider an i.i.d. step-size sequence X : Q — ZN such that |X,| < M € Z... A random walk
S : Q) — ZN with the step size sequence X is a recurrent Markov chain iff EX,, = 0.

Proof. 1If EX,, # 0, the random walk is clearly transient since, it will diverge to oo depending on the sign of [EX,.
Conversely, if [EX,, = 0, then the random walk S is a martingale. Assume that the random walk starts at state
So =i € Z. We define sets

AL{-M-M+1, =2,—1}, Aj =+t My, >
Let 7 denote the hitting time to either the set A or the set A; by the random walk S, i.e.
Téinf{n eIN:S, EAUA.,-}.

It follows that T is a stopping time with respect to the natural filtration of the step-size sequence X. Further,
Szan < M 4+ j. This is not a uniform bound in j. Can we still apply OST? From the optional stopping theorem, we
have E;[S;] = IE;[So] = i. Thus, we have

i = Ei[S7] = Ei[St1is,ea +Sr]1{sT€Aj}] > —MP;{S; €A} + j(1-TP;{S; € A}).
Rearranging the above equation, we get a bound on probability of random walk § hitting A over A; as
j—i
J+M
Since the choice of j € Z was arbitrary, taking limit j — oo, we see that for any i € Z , we have IP; {S,, € A for some n} =

1. Similarly taking B = {1,2,---,M}, we can show that P; {S, € B for some n} = 1 for any i < 0. Result follows
from combining the above two arguments to see that P; {S, € AUB for some n} = 1 for any i € Z. O

P{S, € Aforsomen} > P{S; €A} >

Proposition 2.2. Consider a random walk S : Q0 — RN with i.i.d. step-size sequence X : Q) — RN with common
mean E[X1] # 0. For a,b > 0, we define the hitting time of the walk S exceeding a positive threshold a or going
below a negative threshold —b as

t2{neN:S,>aorS, < —b}.

Let P, denote the probability that the walk hits a value greater than a before it hits a value less than —b. That is,
P, 2P{S;>a}.

Then, for 6 # 0 such that Ee®X1 = 1, we have

1— efeh

P~ ———0F.
a™ 0a _ ,—6b

The above approximation is an equality when step size is unity and a and b are integer valued.



Proof. For any a,b > 0, we can define stopping times
17, =inf{n e N : S, > a}, T ,=inf{neIN:S§, < —b}.

Then, T = 7, A T_,, and we are interested in computing the probability P, = P{t, < 7_,}. We define a random
sequence Z : () — ]R]f such that Z, £ €95 for all n € N, where E¢®*1 = 1. Hence, it follows that Z is a martingale
with unit mean. From the optional stopping theorem, we get [Ee?St = 1. Thus, we get

1= ]E[eesf]l{ra«,b}] + ]E[eesf]l{rpr,b}]-

We can approximate ¢St 1, o 1 by %1, oy and €71y, ooy by e 1, . 1. by neglecting the over-
shoots past the thresholds a and —b. Therefore, we have

1~e%P, +e%(1-P,).
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