
Lecture-28: GI/GI/1 Queues

1 GI/GI/1 Queueing Model
Consider a GI/GI/1 queue. Customers arrive in accordance with a renewal process having an arbitrary inter-
arrival distribution F , and the service time for each customer is i.i.d. with a common distribution G. We assume
that the service discipline is FCFS. We denote the random i.i.d. inter-arrival sequence by X : Ω→ RN

+ , and the
random i.i.d. service time sequence by Y : Ω → RN

+ . Then, the inter-arrival time between nth and (n + 1)th
customer is Xn+1, and the service time of customer n is Yn.

Proposition 1.1 (Lindley’s equation). If we denote the waiting time (before service) for customer n in the queue
by Wn, then we have

Wn = (Wn−1 +Yn−1−Xn)∨0, n ∈N.

We denote W0 = Y0 = 0, and the customer 1 arrives at time X1.

Definition 1.2. For a GI/GI/1 queue with i.i.d. inter-arrival sequence X : Ω→RN
+ and independent i.i.d. service

time sequence Y : Ω→ RN
+ , we associate a random walk sequence S : Ω→ RN with i.i.d. step-size sequence

U : Ω→RN such that
Un , Yn−1−Xn, n ∈N.

Proposition 1.3. Let W : Ω→RN
+ be the random waiting time sequence for customers in a GI/GI/1 queue with

associated random walk S : Ω→RN. Then, we have for some c > 0

P{Wn > c}= P
(
∪ j∈[n]

{
S j > c

})
. (1)

Proof. From the Lindley’s recursion for waiting times and the definition of the associated random walk, we get

Wn = max{0,Wn−1 +Un} .

Iterating the above relation with W1 = 0, and using the definition of random walk S : Ω→RN yields

Wn = max{0,Un +max{0,Wn−2 +Un−1}}= max{0,Un,Un +Un−1 +Wn−2}= max{0,Sn−Sn−1, . . . ,Sn} .

Using the duality principle for exchangeable random sequence U , we can rewrite the following equality in distri-
bution Wn = max{0,S1, . . . ,Sn}.

Corollary 1.4. If EUn > 0, then we have P{W∞ > c}, limn∈N P{Wn > c}= 1 for all c ∈R.

Proof. It follows from Proposition ?? that P{Wn > c} is non-decreasing in n. Hence, by monotone convergence
theorem, the limit exists and is denoted by P{W∞ > c}, limn∈N P{Wn > c}. Therefore, by continuity of proba-
bility and Eq. (??), we have

P{W∞ > c}= P{Sn > c for some n} . (2)

If EUn = EYn−EXn+1 is positive, then by strong law of large numbers the random walk S will converge almost
surely to positive infinity. The above will also be true when E[Un] = 0, then the random walk is recurrent.

Remark 1. It follows from this corollary, that the stability condition EYn < EXn+1 is necessary for the existence
of a stationary distribution.

Proposition 1.5 (Spitzer’s Identity). Let Mn , max{0,S1,S2, . . . ,Sn} for all n ∈N, then

EMn =
n

∑
k=1

1
k

ES+k .
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Proof. We can write Mn = 1{Sn>0}Mn +1{Sn60}Mn. If Sn 6 0, then Mn = Mn−1. That is,

1{Sn60}Mn = 1{Sn60}Mn−1.

If Sn > 0, then Mn = max{S1, . . . ,Sn}. Therefore, we can rewrite the first term in decomposition, as

1{Sn>0}Mn = 1{Sn>0}max
i∈[n]

Si = 1{Sn>0}(U1 +max{0,S2−S1, . . . ,Sn−S1}).

Hence, taking expectation and using exchangeability of the i.i.d. sequence U , we get

E[Mn1{Sn>0}] = E[U11{Sn>0}]+E[Mn−11{Sn>0}].

Since U is an i.i.d. sequence and Sn = ∑
n
i=1 Ui, the tuple (Ui,Sn) has an identical joint distribution for all i ∈ [n].

It follows that
1
n

ES+n =
1
n

E[Sn1{Sn>0}] =
1
n

E
n

∑
i=1

Ui1{Sn>0}] = E[U11{Sn>0}].

Combining the above results, we obtain the following recursion

E[Mn] = E[Mn−1]+
1
n

E[S+n ].

Result follow from the fact that M1 = S+1 .

Remark 2. Since Wn = Mn in distribution, we have E[Wn] = E[Mn] = ∑
n
k=1

1
k E[S+k ].

2 Martingales for Random Walks
Proposition 2.1. Consider an i.i.d. step-size sequence X : Ω→ ZN such that |Xn| 6 M ∈Z+. A random walk
S : Ω→ZN with the step size sequence X is a recurrent Markov chain iff EXn = 0.

Proof. If EXn 6= 0, the random walk is clearly transient since, it will diverge to±∞ depending on the sign of EXn.
Conversely, if EXn = 0, then the random walk S is a martingale. Assume that the random walk starts at state

S0 = i ∈Z+. We define sets

A , {−M,−M+ 1, · · · ,−2,−1} , A j , { j+ 1, . . . , j+M} , j > i.

Let τ denote the hitting time to either the set A or the set A j by the random walk S, i.e.

τ , inf
{

n ∈N : Sn ∈ A∪A j
}

.

It follows that τ is a stopping time with respect to the natural filtration of the step-size sequence X . Further,
Sτ∧n 6 M+ j. This is not a uniform bound in j. Can we still apply OST? From the optional stopping theorem, we
have Ei[Sτ ] = Ei[S0] = i. Thus, we have

i = Ei[Sτ ] = Ei[Sτ1{Sτ∈A}+ Sτ1{Sτ∈A j}] >−MPi {Sτ ∈ A}+ j(1−Pi {Sτ ∈ A}).

Rearranging the above equation, we get a bound on probability of random walk S hitting A over A j as

Pi {Sn ∈ A for some n}> Pi {Sτ ∈ A}> j− i
j+M

.

Since the choice of j∈Z+ was arbitrary, taking limit j→∞, we see that for any i∈Z+, we have Pi {Sn ∈ A for some n}=
1. Similarly taking B , {1,2, · · · ,M}, we can show that Pi {Sn ∈ B for some n} = 1 for any i 6 0. Result follows
from combining the above two arguments to see that Pi {Sn ∈ A∪B for some n}= 1 for any i ∈Z.

Proposition 2.2. Consider a random walk S : Ω→RN with i.i.d. step-size sequence X : Ω→RN with common
mean E[X1] 6= 0. For a,b > 0, we define the hitting time of the walk S exceeding a positive threshold a or going
below a negative threshold −b as

τ , {n ∈N : Sn > a or Sn 6−b} .

Let Pa denote the probability that the walk hits a value greater than a before it hits a value less than −b. That is,

Pa , P{Sτ > a} .

Then, for θ 6= 0 such that EeθX1 = 1, we have

Pa ≈
1− e−θb

eθa− e−θb .

The above approximation is an equality when step size is unity and a and b are integer valued.

2



Proof. For any a,b > 0, we can define stopping times

τa = inf{n ∈N : Sn > a} , τ−b = inf{n ∈N : Sn 6−b} .

Then, τ = τa ∧ τ−b, and we are interested in computing the probability Pa = P{τa < τ−b}. We define a random
sequence Z : Ω→RN

+ such that Zn , eθSn for all n∈N, where EeθX1 = 1. Hence, it follows that Z is a martingale
with unit mean. From the optional stopping theorem, we get EeθSτ = 1. Thus, we get

1 = E[eθSτ1{τa<τ−b}]+E[eθSτ1{τa>τ−b}].

We can approximate eθSτ1{τa<τ−b} by eθa
1{τa<τ−b} and eθSτ1{τa>τ−b} by e−θb

1{τa>τ−b}, by neglecting the over-
shoots past the thresholds a and −b. Therefore, we have

1≈ eθaPa + e−θb(1−Pa).
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