## Lecture-28: GI/GI/1 Queues

## 1 GI/GI/1 Queueing Model

Consider a $G I / G I / 1$ queue. Customers arrive in accordance with a renewal process having an arbitrary interarrival distribution $F$, and the service time for each customer is i.i.d. with a common distribution $G$. We assume that the service discipline is FCFS. We denote the random i.i.d. inter-arrival sequence by $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$, and the random i.i.d. service time sequence by $Y: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$. Then, the inter-arrival time between $n$th and $(n+1)$ th customer is $X_{n+1}$, and the service time of customer $n$ is $Y_{n}$.

Proposition 1.1 (Lindley's equation). If we denote the waiting time (before service) for customer $n$ in the queue by $W_{n}$, then we have

$$
W_{n}=\left(W_{n-1}+Y_{n-1}-X_{n}\right) \vee 0, \quad n \in \mathbb{N} .
$$

We denote $W_{0}=Y_{0}=0$, and the customer 1 arrives at time $X_{1}$.
Definition 1.2. For a GI/GI/1 queue with i.i.d. inter-arrival sequence $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ and independent i.i.d. service time sequence $Y: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$, we associate a random walk sequence $S: \Omega \rightarrow \mathbb{R}^{+}{ }^{+}$with i.i.d. step-size sequence $U: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ such that

$$
U_{n} \triangleq Y_{n-1}-X_{n}, \quad n \in \mathbb{N} .
$$

Proposition 1.3. Let $W: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ be the random waiting time sequence for customers in a GI/GI/l queue with associated random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$. Then, we have for some $c \geqslant 0$

$$
\begin{equation*}
P\left\{W_{n} \geqslant c\right\}=P\left(\cup_{j \in[n]}\left\{S_{j} \geqslant c\right\}\right) . \tag{1}
\end{equation*}
$$

Proof. From the Lindley's recursion for waiting times and the definition of the associated random walk, we get

$$
W_{n}=\max \left\{0, W_{n-1}+U_{n}\right\} .
$$

Iterating the above relation with $W_{1}=0$, and using the definition of random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ yields

$$
W_{n}=\max \left\{0, U_{n}+\max \left\{0, W_{n-2}+U_{n-1}\right\}\right\}=\max \left\{0, U_{n}, U_{n}+U_{n-1}+W_{n-2}\right\}=\max \left\{0, S_{n}-S_{n-1}, \ldots, S_{n}\right\} .
$$

Using the duality principle for exchangeable random sequence $U$, we can rewrite the following equality in distribution $W_{n}=\max \left\{0, S_{1}, \ldots, S_{n}\right\}$.

Corollary 1.4. If $\mathbb{E} U_{n} \geqslant 0$, then we have $P\left\{W_{\infty} \geqslant c\right\} \triangleq \lim _{n \in \mathbb{N}} P\left\{W_{n} \geqslant c\right\}=1$ for all $c \in \mathbb{R}$.
Proof. It follows from Proposition ?? that $P\left\{W_{n} \geqslant c\right\}$ is non-decreasing in $n$. Hence, by monotone convergence theorem, the limit exists and is denoted by $P\left\{W_{\infty} \geqslant c\right\} \triangleq \lim _{n \in \mathbb{N}} P\left\{W_{n} \geqslant c\right\}$. Therefore, by continuity of probability and Eq. (??), we have

$$
\begin{equation*}
P\left\{W_{\infty} \geqslant c\right\}=P\left\{S_{n} \geqslant c \text { for some } n\right\} \tag{2}
\end{equation*}
$$

If $\mathbb{E} U_{n}=\mathbb{E} Y_{n}-\mathbb{E} X_{n+1}$ is positive, then by strong law of large numbers the random walk $S$ will converge almost surely to positive infinity. The above will also be true when $E\left[U_{n}\right]=0$, then the random walk is recurrent.

Remark 1. It follows from this corollary, that the stability condition $\mathbb{E} Y_{n}<\mathbb{E} X_{n+1}$ is necessary for the existence of a stationary distribution.

Proposition 1.5 (Spitzer's Identity). Let $M_{n} \triangleq \max \left\{0, S_{1}, S_{2}, \ldots, S_{n}\right\}$ for all $n \in \mathbb{N}$, then

$$
\mathbb{E} M_{n}=\sum_{k=1}^{n} \frac{1}{k} \mathbb{E} S_{k}^{+} .
$$

Proof. We can write $M_{n}=\mathbb{1}_{\left\{S_{n}>0\right\}} M_{n}+\mathbb{1}_{\left\{S_{n} \leqslant 0\right\}} M_{n}$. If $S_{n} \leqslant 0$, then $M_{n}=M_{n-1}$. That is,

$$
\mathbb{1}_{\left\{S_{n} \leqslant 0\right\}} M_{n}=\mathbb{1}_{\left\{S_{n} \leqslant 0\right\}} M_{n-1} .
$$

If $S_{n}>0$, then $M_{n}=\max \left\{S_{1}, \ldots, S_{n}\right\}$. Therefore, we can rewrite the first term in decomposition, as

$$
\mathbb{1}_{\left\{S_{n}>0\right\}} M_{n}=\mathbb{1}_{\left\{S_{n}>0\right\}} \max _{i \in[n]} S_{i}=\mathbb{1}_{\left\{S_{n}>0\right\}}\left(U_{1}+\max \left\{0, S_{2}-S_{1}, \ldots, S_{n}-S_{1}\right\}\right)
$$

Hence, taking expectation and using exchangeability of the i.i.d. sequence $U$, we get

$$
\mathbb{E}\left[M_{n} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]=\mathbb{E}\left[U_{1} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]+\mathbb{E}\left[M_{n-1} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]
$$

Since $U$ is an i.i.d. sequence and $S_{n}=\sum_{i=1}^{n} U_{i}$, the tuple $\left(U_{i}, S_{n}\right)$ has an identical joint distribution for all $i \in[n]$. It follows that

$$
\left.\frac{1}{n} \mathbb{E} S_{n}^{+}=\frac{1}{n} \mathbb{E}\left[S_{n} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]=\frac{1}{n} \mathbb{E} \sum_{i=1}^{n} U_{i} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]=\mathbb{E}\left[U_{1} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]
$$

Combining the above results, we obtain the following recursion

$$
\mathbb{E}\left[M_{n}\right]=\mathbb{E}\left[M_{n-1}\right]+\frac{1}{n} \mathbb{E}\left[S_{n}^{+}\right]
$$

Result follow from the fact that $M_{1}=S_{1}^{+}$.
Remark 2. Since $W_{n}=M_{n}$ in distribution, we have $\mathbb{E}\left[W_{n}\right]=\mathbb{E}\left[M_{n}\right]=\sum_{k=1}^{n} \frac{1}{k} E\left[S_{k}^{+}\right]$.

## 2 Martingales for Random Walks

Proposition 2.1. Consider an i.i.d. step-size sequence $X: \Omega \rightarrow \mathbb{Z}^{\mathbb{N}}$ such that $\left|X_{n}\right| \leqslant M \in \mathbb{Z}_{+}$. A random walk $S: \Omega \rightarrow \mathbb{Z}^{\mathbb{N}}$ with the step size sequence $X$ is a recurrent Markov chain iff $\mathbb{E} X_{n}=0$.
Proof. If $\mathbb{E} X_{n} \neq 0$, the random walk is clearly transient since, it will diverge to $\pm \infty$ depending on the sign of $\mathbb{E} X_{n}$. Conversely, if $\mathbb{E} X_{n}=0$, then the random walk $S$ is a martingale. Assume that the random walk starts at state $S_{0}=i \in \mathbb{Z}_{+}$. We define sets

$$
A \triangleq\{-M,-M+1, \cdots,-2,-1\}, \quad A_{j} \triangleq\{j+1, \ldots, j+M\}, \quad j>i
$$

Let $\tau$ denote the hitting time to either the set $A$ or the set $A_{j}$ by the random walk $S$, i.e.

$$
\tau \triangleq \inf \left\{n \in \mathbb{N}: S_{n} \in A \cup A_{j}\right\} .
$$

It follows that $\tau$ is a stopping time with respect to the natural filtration of the step-size sequence $X$. Further, $S_{\tau \wedge n} \leqslant M+j$. This is not a uniform bound in $j$. Can we still apply OST? From the optional stopping theorem, we have $\mathbb{E}_{i}\left[S_{\tau}\right]=\mathbb{E}_{i}\left[S_{0}\right]=i$. Thus, we have

$$
i=\mathbb{E}_{i}\left[S_{\tau}\right]=\mathbb{E}_{i}\left[S_{\tau} \mathbb{1}_{\left\{S_{\tau} \in A\right\}}+S_{\tau} \mathbb{1}_{\left\{S_{\tau} \in A_{j}\right\}}\right] \geqslant-M \mathbb{P}_{i}\left\{S_{\tau} \in A\right\}+j\left(1-\mathbb{P}_{i}\left\{S_{\tau} \in A\right\}\right)
$$

Rearranging the above equation, we get a bound on probability of random walk $S$ hitting $A$ over $A_{j}$ as

$$
P_{i}\left\{S_{n} \in A \text { for some } n\right\} \geqslant P_{i}\left\{S_{\tau} \in A\right\} \geqslant \frac{j-i}{j+M}
$$

Since the choice of $j \in \mathbb{Z}_{+}$was arbitrary, taking limit $j \rightarrow \infty$, we see that for any $i \in \mathbb{Z}_{+}$, we have $\mathbb{P}_{i}\left\{S_{n} \in A\right.$ for some $\left.n\right\}=$ 1. Similarly taking $B \triangleq\{1,2, \cdots, M\}$, we can show that $P_{i}\left\{S_{n} \in B\right.$ for some $\left.n\right\}=1$ for any $i \leqslant 0$. Result follows from combining the above two arguments to see that $P_{i}\left\{S_{n} \in A \cup B\right.$ for some $\left.n\right\}=1$ for any $i \in \mathbb{Z}$.

Proposition 2.2. Consider a random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with i.i.d. step-size sequence $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with common mean $\mathbb{E}\left[X_{1}\right] \neq 0$. For $a, b>0$, we define the hitting time of the walk $S$ exceeding a positive threshold a or going below a negative threshold $-b$ as

$$
\tau \triangleq\left\{n \in \mathbb{N}: S_{n} \geqslant a \text { or } S_{n} \leqslant-b\right\} .
$$

Let $P_{a}$ denote the probability that the walk hits a value greater than a before it hits a value less than $-b$. That is,

$$
P_{a} \triangleq P\left\{S_{\tau} \geqslant a\right\}
$$

Then, for $\theta \neq 0$ such that $\mathbb{E} e^{\theta X_{1}}=1$, we have

$$
P_{a} \approx \frac{1-e^{-\theta b}}{e^{\theta a}-e^{-\theta b}}
$$

The above approximation is an equality when step size is unity and $a$ and $b$ are integer valued.

Proof. For any $a, b>0$, we can define stopping times

$$
\tau_{a}=\inf \left\{n \in \mathbb{N}: S_{n} \geqslant a\right\}, \quad \tau_{-b}=\inf \left\{n \in \mathbb{N}: S_{n} \leqslant-b\right\}
$$

Then, $\tau=\tau_{a} \wedge \tau_{-b}$, and we are interested in computing the probability $P_{a}=P\left\{\tau_{a}<\tau_{-b}\right\}$. We define a random sequence $Z: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ such that $Z_{n} \triangleq e^{\theta S_{n}}$ for all $n \in \mathbb{N}$, where $\mathbb{E} e^{\theta X_{1}}=1$. Hence, it follows that $Z$ is a martingale with unit mean. From the optional stopping theorem, we get $\mathbb{E} e^{\theta S_{\tau}}=1$. Thus, we get

$$
1=\mathbb{E}\left[e^{\theta S_{\tau}} \mathbb{1}_{\left\{\tau_{a}<\tau_{-b}\right\}}\right]+\mathbb{E}\left[e^{\theta S_{\tau}} \mathbb{1}_{\left\{\tau_{a}>\tau_{-b}\right\}}\right]
$$

We can approximate $e^{\theta S_{\tau}} \mathbb{1}_{\left\{\tau_{a}<\tau_{-b}\right\}}$ by $e^{\theta a} \mathbb{1}_{\left\{\tau_{a}<\tau_{-b}\right\}}$ and $e^{\theta S_{\tau}} \mathbb{1}_{\left\{\tau_{a}>\tau_{-b}\right\}}$ by $e^{-\theta b} \mathbb{1}_{\left\{\tau_{a}>\tau_{-b}\right\}}$, by neglecting the overshoots past the thresholds $a$ and $-b$. Therefore, we have

$$
1 \approx e^{\theta a} P_{a}+e^{-\theta b}\left(1-P_{a}\right)
$$

