Lecture-02: Review of Linear Algebra and Convex Optimization

1 Review of Linear Algebra

1.1 Vector Space

Definition 1.1 (Vector addition). A set V is set to be equipped with vector addition mapping 4+ :V XV —V
defined by +(v,w) = v+ w for any two elements v,w € V, if this mapping satisfies the following four axioms.
Associativity: u+ (v+w) = (u+v)+w; forall u,y,w € V.

Commutativity: u+v=v+u; forallu,veV.

Additive identity: There exists a zero vector (0 € V) s.t, u+0=u; forallu € V.

Additive inverse: For every u € V, there exists an element —u € V; s.t, u+ (—u) = 0.

Definition 1.2 (Scalar multiplication). A set V equipped with vector addition + : V x V — V is also equipped
with field scalar multiplication mapping - : F x V — V defined by -(¢t,v) = av € V, if this mapping satisfies the
following four axioms.

Field compatibility: a(bu) = (ab)u; foralla,b € Fandu € V.

Multiplicative identity: For multiplicative identity element 1 € F, lu = u; forallu € V.

Distributivity over vector addition: o/(vu) = au+owv; forall @ € Fand u,v € V.

Distributivity over field addition: (o + )u = ou+ Pu;forall o, € FandueV.

Definition 1.3 (Vector space). A vector space over the field IF is a set V equipped with vector addition +:V XV —
V and scalar multiplication - : F xV — V.

Definition 1.4. A set of vectors W C V are called linearly independent, if for any nonzero vector @ € FW with
finite ", oy, we have ¥, ey oW £ 0 € V.

Definition 1.5. The span of a set of vectors W C V is defined by span(W) £ {¥,,.c aww : @ € RV ¥,y i, finite} .
Definition 1.6. A basis of any vector space V/, is a spanning set of linearly independent vectors.
Theorem 1.7. All bases of a vector space V have identical cardinality, and defined to be its dimension.
Example 1.8 (Vector space). Following are some common examples of vector spaces.
1. Euclidean space of N-dimensions, denoted by RY.
2. Space of continuous functions over a compact subset [a,b] denoted by C([a,b]).

3. Space of random variables defined over probability space (Q, 5, P).

1.2 Inner Product Space

A inner product space is a vector space equipped with an inner product denoted by (-,-) : V x V — R that satisfies
the following axioms.

1. Symmetry: (x,y) = (y,x)
2. Linearity: (ax+ fy,z) = o{x,z) + B (,2)
3. Definiteness: (x,x) > 0; (x,x) =0iffx=0
Example 1.9 (inner product spaces). Following are some common examples of inner product spaces.
1. For the vector space V = R" of N-dimensional vectors, the inner product is defined as (x,y) = x”y = Zf»v XiYi.
2. For vector space V = C(RY) of continuous functions, the inner product is defined as (f,g) = [pv (f,g)(t)dt.

3. For the vector space of random variables, the inner product is defined as (X,Y) £ EXY.



1.3 Norms
Norm is a mapping ||-|| : V — R that satisfy the following axioms.
1. Definiteness: ||v|| =0iffv=0
2. Homogeneity: ||av| = |c|||v]]
3. Triangle inequality: ||v+w|| < ||v|| +||w||
Example 1.10 (Norms). For a vector space V = R" of N dimensional vectors, we can define the p-norm for p > 1

1
as [|x], = ( A |x,~\”) " forall x € RN, For p = 1, we have ||x||; = X, |x;|. For p = o0, we have |x||,, = max; |x;].

For p = 2, the norm is Euclidean norm.

Proposition 1.11 (Holder’s Inequality). Let p,q > 1 be conjugate, i.e. % + é =1 Then,

x| < Nl Iyl for atl x,y € RY.

Proof. The Holder’s inequality is trivially true if x = 0 or y = 0. Hence, we assume that ||x||||y|| > 0, and let

at ”‘f""‘ and b £ ”‘})’}l‘li . We will use the Young’s inequality %a" + ébq > ab for all a,b > 0, that implies that
P q

bel? o il Jx]; |yl;
=
plxID  qlyld ~ lxll, [yl

, foralli € [N].
Since | {x,y)| < YN, x| |yi], we get the result by summing both sides over i € [N] in the above inequality.

2 Review of Convex Optimization

Let X CRN for N > 1 and f : X — R be a smooth function.

Definition 2.1 (Gradient). The gradient of function f at point x € X is defined as the column vector V f(x) € RV,

where the ith entry is defined as Vf;(x) £ g—){ (x) for all i € [N].

Definition 2.2 (Hessian). The Hessian of function f at point x € X is denoted by the matrix V2f(x) € RV*V,

where the (i, j)th entry is defined as V2 f; j(x) £ 83231; (x) for all i, j € [N].
y 0%,

Remark 1. Let f : RY — R be a smooth function over N-dimensional reals. Then, we can write its Taylor series
expansion around the neighborhood of x € R", in terms of the gradient vector V f(x) € RN and the Hessian matrix
V2f(x) € RVN ag

FO) =) +(Vf(x), (y—x)) + % (=), V2 F () (=) +o(ly—x[3). (1

Definition 2.3 (Stationary Point). A point x € X is called a stationary point, if f attains a local extremum at x.

Remark 2. If f : X — R is smooth, then V f(x) = 0 at a stationary point x € X.

2.1 Convexity

Definition 2.4 (Convex Set). A set X is called convex if for all x,y € X and a € [0, 1], the convex combination
ax+ay € X where & = (1 — ).

Definition 2.5 (Convex Hull). A convex hull of a set A is the smallest convex set including A, i.e. conv(A) £
{Yreaox:0<a, <1,  cp0 =1}

Definition 2.6. Let X C RV For a function f : X — R, we define its epigraph as

Epi(f) £ {(x,y) € X xRy > f(x)}.
Definition 2.7. A function f : X — R is convex if the associated domain X and epigraph Epi(f) are convex sets.
Theorem 2.8. Let X C RN be a convex set. Then the following are equivalent statements.

1. f:X —= Ris a convex function.



2. Forall a € (0,1], we have f(ox+(1—o)y) < af(x)+ (1 — o) f(y).
3. For differentiable f, we have f(y) — f(x) = (Vf(x),y —x) for all x,y € X.
4. For twice differentiable f, we have V> f = 0, i.e. V>f is a positive semi-definite matrix.

Proof. For convex set X C RY and a function f: X — R, we will show that statement 1 implies statement 2, which
implies statement 3, which implies statement 4, which implies statement 1.

1 = 2: Let (x,f(x)),(»,f(y)) € Epi(f) for x,y € X. Let a € [0, 1], then from the convexity of X, we have
ox+ oy € X. Further from the convexity of Epi(f), we have (ax+ @y, af(x)+ o f(y)) € Epi(f). That is,
of(x)+af(y) > flax+ay).

2 = 3: Recall that ax+ &y = x+ &(y — x). From statement 2, we have f(y) — f(x) > W Taking
o — 0, we observe that the right hand side is equal to (V f(x),y —x).

3 = 4: From () and statement 3, it follows that for any x,y € X f(y) — f(x) — (V£ (x),y —x) = 3 (y—x)T V2 f(x) (y—
x) +o(|ly—x[3) > 0.

4 = 1: Let o € [0, 1]. Then, it suffices to show that ot f(x;) + & f(x2) > f(0x] + 0x2). From the Taylor expan-
sion of f in the neighborhood of x;, we get

a(f(x1) = f(x2)) = o (Vf(x2),x1 —x2) + % {(x1 —x2), V2 (x2) (x1 —x2) ) + o(x1 — x2]3).

Similarly, we write the Taylor expansion of f in the neighborhood of x», to get

2
flox) +ax) — f(x2) = o (Vf(x2),x1 —x2) + % {(x1 —x2), V2 (x2) (x1 —x2) ) + 0(|x1 — x2]13).

Taking the difference, we get at(f(x1) — f(x2)) = f(ax; + axz) — f(x2).

Example 2.9 (Convex Function). Following functions f : RY — R are convex.
1. Linear Function: f(x) = (w,x) for w € RV.
2. Quadratic Function: f(x) = x” Ax for a positive semi definite matrix A € RV*V,
3. Abs Maximum: f(x) = max {|x;| : i € [N]} = ||x]|.-

Lemma 2.10 (Composition of functions). We define a composition function f = ho g for functions h: R — R
and g : RN — R, by defining f(x) = h(g(x)) for all x € RN. Then, the following statements are true.

1. If his convex and nondecreasing and g is convex, then f is convex.

2. If h is convex and nonincreasing and g is concave, then f is convex.

3. If h is concave and nondecreasing and g is concave, then f is concave.
4. If his concave and nonincreasing and g is convex, then f is concave.

Proof. We will use the property that a function f is convex iff dom(f) is convex and f(ax+ &y) < o f (x) + a.f(y)
for all ¢ € [0,1]. Recall that RY is convex for all N > 1. We will only show the first statement, and rest follow
the same steps. Let x,y € RY and « € [0, 1]. From the convexity of g, we get g(ox + ay) < ag(x) + @g(y). From
the nondecreasing property of h, we get h(g(ax+ @y)) < h(ag(x) + ag(y)). From the convexity of h, we get
h(otg(x) + 0g(y)) < ah(g(x)) + ah(g(y))- O

Theorem 2.11 (Jensen’s Inequality). Let X : Q — X C RN be a random vector with finite marginal means, and
f: X — R be a convex function. Then the mean E[X]| € X, the mean E[f(X)] is fuite, and f(E[X]) < E[f(X)].

Proof. We will show this for simple random vector X : Q — {x1,...,x,} C X, such that o; £ P{X = x;} for all
i € [m]. Then, the mean EX = Y7, a;x; € X from the convexity of X, and Ef (X) = Y, a;f (x;) is finite. Further,

from the convexity of f, we get f (Zf”zl Ocl-xi) <Y aif (x). O
Corollary 2.12 (Young’s inequality). Let p,q > 1 be the conjugate pair such that 1/p+1/q = 1. Then, ab <
o | bl
P4



Proof. Take a random variable X : Q — {aP,b?} with probability mass function Px(a?) = % and Py (b)) = é.
Then, from the concavity of log

1 1 1 1
In (a”+ b") =InEX > EInX = —Ina” 4+ — Inb? = Inab.
p q p q

Since In(+) is an increasing function, the above inequality implies the result. O

2.2 Constrained Optimization

Problem 2.13 (primal problem). Consider a cost function f: RN — R and a constraint function g : RN — R™.
The primal problem is p* = inf{f(x) : x € X}, where the constraint set is

X2, {xeRY: g(x) <0}. (2)

Definition 2.14 (Lagrangian). For the Problem , we define an associated Lagrangian function £ : RV x R —
R for Lagrange or dual variables o € R’} and primal variables x € RN, as

L(x,00) 2 fx)+ (a,8(x)) . 3)

Definition 2.15 (Dual function). The dual function F : R — R associated with the Problem is defined for
dual variables @ € R’} as

F(a)2inf{L(x,00) :x e RV}, “)
Theorem 2.16. The following are true for the dual function F : R} — R defined in (@) for the Problem
1. Fis concave in o € R’}
2. F(a) < L(x,a) forall & € R and x € RV,
3. F(a) < p* forall a € RT.
Proof. Recall that £(at) = f(x) + (&, g(x)) is a linear function of o € R, and F (o) = inf, £(x, ot).

1. Let B €[0,1] and oy, € R and x € X. It follows from the linearity of Lagrangian in o that
F(Bou +Boaz) = inf [BL(x, 1) + BL(x, 00)| > BinfL(x,an)+ Binf£(x,00) = BF (@) + BF(0t).

2. From the definition of F, it follows that F (&) < £(x, o) for all x € RV,

3. Recall that g;(x) < 0 for all x € X, and hence (a,g(x)) < 0 for all x € X. Therefore, F(a) < f(x) for all
x € X, and hence the result follows.

O
Problem 2.17. Dual problem The dual problem associated with primal problem defined in Problem is
d* £ max {F(a):a eR}}.

Remark 3. From the properties of dual function F : Ry — R in Theorem we obtain that F is concave in
o € R%. Since R’} is a convex set, it follows that the dual problem is convex. We further observe that the optimal
value of dual problem d* < p*. The difference of optimal values (p* —d*) is called the duality gap. For a primal
problem, the strong duality holds if the duality gap is zero, or d* = p*.

2.3 Convex constrained optimization

Definition 2.18 (Saddle point). For a Lagrangian £ : RV x R™ — R, a saddle point (x*, &c*) sastifies

sup L(x*,00) < L(x*,a") < inf L(x,a™).
acR? xeRN

Theorem 2.19 (Sufficient condition). For the primal problem defined in Problem if (x*,0*) is a saddle
point of the associated Lagrangian L, then x* € X and p* = f(x*) = F(a*).



Proof. Let (x*, a*) be the saddle point of the Lagrangian £ associated with the Problem From the definition
of dual function F, we get that £(x*, *) < F(a*) < L(x*, ¢*). Tt follows that F(a*) = L(x*, a*).

Recall that £(x*, a) = f(x*) + (o, g(x*)). We assume that there exists an i € [m] such that g;(x) > 0, then we
can take ¢ large enough so that £(x*, o) > £(x*, o¢*). This contradicts the saddle point condition, and hence x* €
X. Therefore (a, g(x*)) < O for all & € R!'. This implies that (a*, g(x*)) = 0 and hence p* = f(x*) = F(a*). O

Definition 2.20 (Strong constraint qualification). The strong constraint qualification or Slater’s condition is
defined as the existence of a point x € X° such that g;(x) < 0 for all i € [m].

Theorem 2.21 (Strong necessary condition). Let the cost function f and constraints g; for i € [m] be convex
Sfunctions, such that the Slater’s condition holds, and x* be the solution of the Problem . Then, there exists
o* € RY such that (x*, ") is a saddle point of the associated Lagrangian L.

Definition 2.22 (Weak constraint qualification). The weak constraint qualification or weak Slater’s condition
is defined as the existence of a point x € X such that for each i € [m] either g;(x) < 0 or g;(x) = 0 and g; affine.

Theorem 2.23 (Weak necessary condition). Let the cost function f and constraints g; for i € [m] be convex
differentiable functions, such that the weak Slater’s condition holds, and x* be the solution of the Problem[2.13)].
Then, there exists a* € R such that (x*,0*) is a saddle point of the associated Lagrangian L.

Remark 4. The strong duality holds when the primal problem is convex with qualifying constraints.

Theorem 2.24 (Karush-Kuhn-Tucker (KKT)). Let the cost function f and constraint functions g; for all i € [m]
be convex and differentiable functions, such that the constraints are qualified. Then x* € RV is a solution of the
constrained problem iff there exists o* € R} such that

ViL(x, a") = Vof (x') + (a, Vg (x7)) = 0, Vo L(x", a%) = g(x") <0, (a,g(x")) = 0.

Proof. From the necessary condition theorem, it follows that if x* is a solution to the primal problem, then there
exists dual variables a* such that (x*, a*) is a saddle point of the Lagrangian, and all three conditions are satisfied.
Conversely, if all three conditions are met, then for any x € RY such that g;(x) < 0 for all i € [m], we have

m

) =f(x") = (Vaof (), x =x7) = — ; 0 (Vigi(x"),x —x7) = — (", g(x) —g(x")) = — (", g(x)) = 0.

The first inequality follows from the convexity of f. The subsequent equality follows from the first condition.
Next inequality follows from the convexity of g; for all i € [m]. Next equality follows from the third condition,
and the last inequality from the fact that x € X. O
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