
Lecture-03: Support Vector Machines – Separable Case

1 Linear binary classification
Let the input space be X= RN for the number of dimensions N > 1, the output space Y= {−1,1}, and the target
function be some mapping c : X→ Y.

Definition 1.1. For a vector w ∈RN and scalar b ∈R, we define a hyperplane Ew,b ,
{

x ∈ RN : 〈w,x〉
‖w‖2

=− b
‖w‖2

}
.

Definition 1.2. Distance of a point from a set is defined as d(x,A) , min{d(x,y) : y ∈ A}. For x,y ∈ RN , the
distance d(x,y), ‖x− y‖2

2.

Lemma 1.3. For a vector w ∈ RN and b ∈ R, we have d(0,Ew,b) =− b
‖w‖ .

Proof. For a vector w, we define a unit vector u , w
‖w‖ . It follows that x0 , − b

‖w‖u lies on the hyperplane Ew,b,

which is parallel to the unit vector u and at distance d(0,x0) = − b
‖w‖ from the origin. Any point x ∈ Ew,b on the

hyperplane can be written as a sum of two orthogonal vectors x = x0 +x−x0 where < x−x0,w >= 0. Therefore,
d(0,x)2 = d(0,x0)

2 +d(x0,x)2 > d(0,x2
0), and hence d(0,Ew,b) = d(0,x0).

Remark 1. A hyperplane Ew,b =
{

x ∈ RN : 〈w,x〉+b = 0
}

is defined in terms of the unit vector w/‖w‖2 and its
distance −b/‖w‖2 from the origin.

Lemma 1.4. The distance of any point x ∈ RN to a hyperplane Ew,b is given by d(x,Ew,b) =
|〈w,x〉+b|
‖w‖ .

Proof. Let u = w/‖w‖ be the unit vector in the direction of w. Any point y on a hyperplane Ew,b, can be written
as sum of two orthogonal vectors y = x0 +y−x0 where < y−x0,x0 >= 0 and x0 =− b

‖w‖u. Any point x ∈RN can
be represented as x = 〈x,u〉u+ v, such that 〈v,w〉= 0. Therefore,

d(x,Ew,b)
2 = min

y∈Ew,b
d(x,y)2 = min

y∈Ew,b
d(x0 + y− x0,〈x,u〉u+ v)2 >

( 〈x,w〉+b
‖w‖

)2
.

Remark 2. The distance of a point x ∈RN from the hyperplane Ew,b is given by d(x,Ew,b). If 〈w,x〉+b > 0, then
the point x lies above the hyperplane Ew,b, and if 〈w,x〉+b < 0, then point x lies below the hyperplane Ew,b.

Assumptions 1.5. We are given a training sample z ∈ (X×Y)m consisting of m labeled training examples zi =
(xi,yi) ∈ X×Y, where each example xi is generated i.i.d. by a fixed but unknown distribution D, and the label
yi = c(xi) for an unknown concept c : X→ Y.

Assumptions 1.6. We define the hypothesis set as a collection of separating hyperplanes

H ,
{

x 7→ sign(〈w,x〉+b) : w ∈ RN ,b ∈ R
}
.

Remark 3. Any hypothesis h∈H is identified by the pair (w,b) such that h(x) = sign(〈w,x〉+b) for all x∈RN . A
hypothesis h∈H labels positively all points falling on one side of the hyperplane Ew,b ,

{
x ∈ RN : 〈w,x〉+b = 0

}
and labels negatively all others. This problem is referred to as linear binary classification problem.

Remark 4. For the Hamming loss function L(y,y′) = 1{y6=y′}, the generalization error is RD(h) = P{h(x) 6= c(x)} .
The objective is to select an h ∈ H such that the generalization error RD(h) is minimized.
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2 SVMs — separable case
Support vector machines are one of the most theoretically well motivated and practically most effective binary
classification algorithms. We first introduce this algorithm for separable datasets, then present its general version
for non-separable datasets.

Assumptions 2.1. Let T1 , {i ∈ [m] : yi =−1} and T2 , {i ∈ [m] : yi = 1}. The training sample z can be separated
into two non-empty sets by a hyperplane. That is, there exists a hyperplane Ew,b such that [m] = T1∪T2 and

T1 = {i ∈ [m] : h(xi) = 〈w,xi〉+b > 0} , T2 = {i ∈ [m] : h(xi) = 〈w,xi〉+b < 0} .

Remark 5. For such a hyperplane Ew,b, we have yih(xi)> 0 for all i ∈ [m].

Remark 6. Let Ew,b be one of infinite such planes. Which hyperplane should a learning algorithm select? The
solution Ew∗,b∗ returned by the SVM algorithm is the hyperplane with the maximum margin, or the distance to
the closest points, and is thus known as the maximum-margin hyperplane.

2.1 Primal optimization problem
Assumption 2.1 confirms the existence of at least one pair (w,b) and labeled sample (x,y) ∈ T such that 〈w,x〉+
b 6= 0. We can normalize the pair (w,b) by the scalar mini∈[m] |〈w,x〉+b|, such that if the closest point is x0 ∈ S,
then

|〈w,x0〉+b|= 1.

We define this representation of the hyperplane Ew,b as the canonical hyperplane. Let ρ be the minimum distance
of any point to the canonical hyperplane, i.e ρ ,mini∈[m]

|〈w,xi〉+b|
‖w‖ = 1

‖w‖ . The maximizing the margin is equivalent

to minimizing the norm ‖w‖ or 1
2 ‖w‖

2.
We can show in a figure the margin for a maximum-margin hyperplane with a canonical representation (w,b).

We also see the marginal hyperplanes, parallel to the separating hyperplane and passing through the closest
points on the negative or positive sides. Since they are parallel to the separating hyperplane, they admit the
same normal vector w. By the definition of a canonical representation, for a point x on a marginal hyperplane,
|〈w,x〉+b| = 1, and thus the marginal hyperplanes are 〈w,x〉+ b = ±1. Correct classification is achieved for
a labeled point (xi,yi) when yi = sign(〈w,xi〉+ b). Since |〈w,xi〉+b| > 1 for all labeled points (xi,yi) by the
definition of canonical hyperplanes, a correct classification is achieved when

yi(〈w,xi〉+b)> 1 for all i ∈ [m].

Hence our original problem statement translates to finding (w,b) so as to maximize the margin ρ such that all
points are correctly separated is equivalent to

min
w,b

1
2
‖w‖2 (1)

subject to: yi(〈w,xi〉+b)> 1 for all i ∈ [m].

The objective function F : w 7→ 1
2 ‖w‖

2 is infinitely differentiable, its gradient is ∇w(F) = w and its Hessian is the
identity matrix ∇2F(w) = I with strictly positive eigenvalues. Therefore, ∇2F(w) � 0 and F is strictly convex.
The constraints are all defined by the affine functions gi : (w,b) 7→ 1−yi(〈w,xi〉+b) and are thus qualified. Thus
the optimization problem in (1) has a unique solution, and can be solved by a quadratic program.

2.2 Support vectors
In this section, we will show that the normal vector w to the resulting hyperplane is a linear combination of some
feature vectors, referred to as support vectors. Consider the dual variables αi > 0 for all i ∈ [m] associated to
the m affine constraints and let α , (αi : i ∈ [m]). Then, we can define the Lagrangian for all canonical pairs
(w,b) ∈ RN+1 and Lagrange dual variables α ∈ Rm

+ as

L(w,b,α),
1
2
‖w‖2−

m

∑
i=1

αi[yi(〈w,xi〉+b)−1].

Since the primal problem in (1) has convex cost function with affine constraints, Ew∗,b∗ is the optimal separating
cannonical hyperplane if and only if there exists α∗ ∈ Rm

+ that satisfies the following three KKT conditions:

∇wL|w=w∗ = w∗−
m

∑
i=1

αiyixi = 0, ∇bL|b=b∗ =−
m

∑
i=1

α
∗
i yi = 0, α

∗
i [yi(〈w∗,xi〉+b∗)−1] = 0.
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Remark 7. The complementary condition implies that α∗i = 0 if the labeled points are not on the supporting
hyperplane, i.e. yi(〈w∗,xi〉+b∗) 6= 1.

Definition 2.2 (Support vectors). We can define the support vectors as the examples or feature vectors for which
the corresponding Lagrange variable α∗i 6= 0, i.e. S , {i ∈ [m] : α∗i 6= 0} ⊆ {i ∈ [m] : yi(〈w∗,xi〉+b∗) = 1} .

Remark 8. The optimal primal variables (w∗,b∗) in the SVM solution are the stationary points of the associated
Lagrangian, and hence we can write the normal vector as a linear combination of support vectors, i.e.

w∗ =
m

∑
i=1

α
∗
i yixi = ∑

i∈S
α
∗
i yixi. (2)

Remark 9. Support vectors completely determine the maximum-margin hyperplane solution. Vectors not lying on
the marginal hyperplane do not affect the definition of these hyperplanes.

Remark 10. The slope of the hyperplane w∗ is unique but the support vectors are not unique. A hyperplane is
sufficiently determined by N + 1 points in N dimensions. Thus, when more than N + 1 points lie on a marginal
hyperplane, different choices are possible for the N +1 support vectors.

Remark 11. We have expressed the normal vector w∗ for the optimal hyperplane, in terms of the optimal dual
variable α∗ ∈ Rm

+. We have not yet found the optimal dual variables, or the normalized distance b∗.

2.3 Dual optimization problem
In this section, we will show that the hypothesis h ∈ H and distance b can be expressed as inner products. To
this end, we look at the the dual form of the constrained primal optimization problem (1). Recall that the dual
function F(α) = infw,bL(w,b,α). The Lagrangian L is minimized at the optimal primal variables (w∗,b∗) such
that ∇wL(w∗,b∗) = ∇bL(w∗,b∗) = 0 to write the optimal normal vector w∗ = ∑

m
i=1 αiyixi in terms of the dual

variables α ∈ Rm
+ as expressed in (2), together with the constraint ∑

m
i=1 αiyi = 0.

Definition 2.3 (Gram matrix). For a labeled sample z ∈ (X× Y)m, we can define a Gram matrix A ∈ Rm×m

defined by the (i, j)th entries Ai j ,
〈
yixi,y jx j

〉
for all i, j ∈ [m].

Remark 12. The matrix A is the Gram matrix associated with vectors (y1x1, . . . ,ymxm) and hence is positive
semidefinite. We can easily check that for any α ∈ Rm, we have

α
T Aα = ∑

i, j∈[m]

〈
αiyixi,α jy jx j

〉
=

∥∥∥∥∥ ∑
i∈[m]

αiyixi

∥∥∥∥∥
2

> 0.

Substituting w∗=∑
m
i=1 αiyixi, ∑

m
i=1 αiyi = 0, and the definition of Gram matrix A, in the Lagrangian L(w∗,b∗,α),

we can write the dual function as F(α) = L(w∗,b∗,α) = ∑
m
i=1 αi− 1

2 ∑
m
i=1 ∑

m
j=1 αiAi jα j. Therefore, we can write

the dual SVM optimization problem as

max
α
‖α‖1−

1
2

α
T Aα (3)

subject to: αi > 0, for all i ∈ [m], and
m

∑
i=1

αiyi = 0.

The objective function G : α 7→ ‖α‖1− 1
2 αT Aα is infinitely differentiable, and its Hessian is given by ∇2G =

−A � 0, and hence G is a concave function. Since the constraints are affine and convex, the dual maximization
problem (3) is equivalent to a convex optimization problem. Since G is a quadratic function of Lagrange variables
α , this dual optimization problem is also a quadratic program, as in the case of the primal optimization. Since
the constraints are affine, they are qualified and strong duality holds. Thus, the primal and dual problems are
equivalent, i.e., the solution α∗ of the dual problem (3) can be used directly to determine the hypothesis returned
by SVMs. Using (2) for the normal to the supporting hyperplane, we can write the hypothesis

h(x) = sign(〈w∗,x〉+b∗) = sign

(
m

∑
i=1

α
∗
i yi 〈xi,x〉+b∗

)
.

For any support vector xi for i ∈ S, we have yi = 〈w∗,xi〉+b∗, and hence we can write for all j. ∈ S

b∗ = y j−
m

∑
i=1

α
∗
i yi
〈
xi,x j

〉
. (4)
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Combining the above two results, we get for any j ∈ S

h(x) = sign

(
∑
i∈S

α
∗
i yi
〈
xi,x−x j

〉
+ y j

)
.

Remark 13. The hypothesis solution depends only on inner products between vectors and not directly on the
vectors themselves.

Remark 14. Since (4) holds for all i ∈ S, that is for all i such that α∗i 6= 0, we can write

0 =
m

∑
i=1

α
∗
i yib∗ =

m

∑
i=1

α
∗
i y2

i −
m

∑
i, j=1

α
∗
i Ai, jα

∗
j =

m

∑
i=1

α
∗
i −‖w∗‖

2 .

That is, we can write the optimal margin ρ as ρ2 = 1
‖w∗‖22

= 1
‖α∗‖1

.
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