
Lecture-04: SVMs — non-separable case

1 SVMs — non-separable case
In most practical settings, the given sample z ∈ (X×Y)m is not linearly separable. For X ⊆ RN and Y ⊆ R, it
would not be possible to draw a hyperplane in RN that perfectly separates the two sets of points. More precisely,
for any canonical hyperplane 〈w,x〉+b = 0, there exists i ∈ [m] such that

yi(〈w,xi〉+b)< 1.

To minimize the number of such points we can try to find a hyperplane that minimizes the empirical error,

minw,b

m

∑
i=1

1{yi(〈w,xi〉+b)<1}.

This optimization problem is NP-hard in the dimension of the space and cannot be solved efficiently. Moreover
we would like to work with a smooth function to optimize. The constraints imposed in the linearly separable
case discussed in the linearly spearable case cannot all hold simultaneously. However, a relaxed version of these
constraints can indeed hold, where for each example i ∈ [m], there exists a slack variable ξi > 0 such that

yi(〈w,xi〉+b)> 1−ξi.

A slack variable ξi measures the distance by which feature vector xi violates the desired inequality, yi(〈w,xi〉+
b)> 1.

Definition 1.1 (Outliers). For a hyperplane 〈w,x〉+ b = 0, a feature vector xi with slack variable ξi > 0 is an
outlier. The set of outliers O is defined as

O , {i ∈ [m] : 1−ξi 6 yi(〈w,xi〉+b)< 1}= {i ∈ [m] : ξi > 0} .

Remark 1. Each example xi must be positioned on the correct side of the appropriate marginal hyperplane to not
be considered an outlier. As a consequence, a feature vector xi with 0 < yi(〈w,xi〉+b)< 1 is correctly classified
by the hyperplane 〈w,x〉+b = 0 but is nonetheless considered to be an outlier, that is, ξi > 0.
Remark 2. If we omit the outliers, the training data is correctly separated by 〈w,x〉+b = 0 with a margin ρ = 1

‖w‖
that we refer to as the soft margin, as opposed to the hard margin in the separable case.
Remark 3. How should we select the hyperplane in the non-separable case? One idea consists of selecting the
hyperplane that minimizes the empirical error. We have already rejected that idea due to the complexity consid-
erations. We have conflicting objectives here. On the one hand, we need to minimize the total slack due to the
outliers, measured by ‖ξ‖p

p = ∑
m
i=1 ξ

p
i , for some p > 1. On the other hand, we wish to maximize the margin for

non-outliers. Larger margin can lead to more outliers and hence larger slack. Hence, these two are conflicting
objectives.

1.1 Primal optimization problem
We define a primal problem by deciding on a trade-off between these two objectives for the non-seperable case,
where C > 0 is the trade-off parameter between margin-maximization and the slack penalty. The parameter C is
determined by n-fold cross validation for a given dataset. For ξ ∈ Rm

+, the primal problem is

min
w,b,ξ

1
2
‖w‖2

2 +C‖ξ‖p
p

subject to yi(〈w,xi〉+b)> 1−ξi and ξi > 0, for all i ∈ [m].

(1)

As in the separable case, the objective function is convex and the constraints are affine. Therefore, the primal
problem in (1) is a convex optimization problem. In particular, ξ 7→ ∑

m
i=1 ξ

p
i = ‖ξ‖p

p is convex in view of the
convexity of the norm ‖·‖p. There are many possible choices for p leading to more or less aggressive penalizations
of the slack terms. The choices p = 1 and p = 2 lead to the most straightforward solutions and analyses.
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Definition 1.2 (Hinge loss). The loss functions associated with p = 1 and p = 2 are called the hinge loss and the
quadratic hinge loss, respectively.

Remark 4. Both hinge losses are convex upper bounds on the zero-one loss, thus making them well suited for
optimization. We first observe that for all p > 1.

1{x<0} 6 (1− (x∧1))p.

Recall that a labeled point (x,y) is incorrectly labeled if y(〈w,x〉+b)< 0. From the definition of the slack variable
ξ , we have 1−ξ 6 y(〈w,x〉+b)< 1. Therefore, we observe that

1{y(〈w,x〉+b)<0} 6 (1− (y(〈w,x〉+b)∧1))p 6 (1− (1−ξ )∧1)p = ξ
p.

In what follows, the analysis is presented in the case of the hinge loss (p = 1), which is the most widely used
loss function for SVMs.

1.2 Support vectors
In this section, we will show that the normal vector w to the resulting hyperplane is a linear combination of
some feature vectors, referred to as support vectors. Consider the dual variable α,β ∈ Rm

+ associated to the m
affine relaxed separation constraints and m non negativity constraint on slack variables. Then, we can write the
Lagrangian for all canonical pairs (w,b) ∈ RN+1 and Lagrange dual variables α,β ∈ Rm

+ as

L(w,b,ξ ,α,β ) =
1
2
‖w‖2

2 +C‖ξ‖1−
m

∑
i=1

αi(yi(〈w,xi〉+b)−1+ξi)−
m

∑
i=1

βiξi. (2)

Similar to the separable case, the constraints in the primal problem in (1) are affine and thus qualified. In addition,
the objective function as well as the affine constraints are convex and differentiable. It follows that Ew∗,b∗ is the
optimal separating cannonical hyperplane if and only if there exists α∗,β ∗ ∈ Rm

+ that satisfies the following three
KKT conditions. The first KKT condition is obtained by taking the gradient of Lagrangian with respect to primal
variables and equating it to zero, to get

∇wL|w=w∗ = w∗−
m

∑
i=1

αiyixi = 0, ∇bL|b=b∗ =−
m

∑
i=1

α
∗
i yi = 0, ∇ξL|ξ=ξ ∗ =C−α−β = 0.

The next KKT condition is obtained by setting the derivative with respect to dual variables, being less than or
equal to zero. This is equivalent to constraints being satisfied, i.e. for all i ∈ [m]

∇αL=−yi(〈w∗,xi〉+b∗)+1−ξ
∗
i 6 0, ∇βL=−ξ

∗ 6 0.

The final KKT conditions looks at the complementary condition, which results in ∑
m
i=1 α∗i (yi(〈w∗,xi〉+b∗)−1+

ξ ∗i ) = 0 and ∑
m
i=1 β ∗i ξ ∗i = 0. Since α,β ∈ Rm

+, together with second condition of KKT, it follows that the each
term of the two summation is positive. Therefore, it means that for all i ∈ [m]

α
∗
i [yi(〈w∗,xi〉+b∗)−1+ξ

∗
i ] = 0, β

∗
i ξ
∗
i = 0.

Remark 5. The complementary condition implies that α∗i = 0 if yi(〈w∗,xi〉+b∗) 6= 1−ξ ∗i .

Definition 1.3 (Support vectors). An example of feature vector is a support vector if the corresponding relaxed
constraint Lagrange variable α∗i 6= 0, i.e. S , {i ∈ [m] : α∗i 6= 0} ⊆ {i ∈ [m] : yi(〈w∗,xi〉+b∗) = 1−ξ ∗i } .

Remark 6. If for some feature vector xi ∈ S and the corresponding slack variable ξ ∗i = 0, then yi(〈w∗,xi〉+b∗) = 1
and the example xi lies on a marginal hyperplane, as in the separable case. Otherwise, ξ ∗i 6= 0 and xi is an outlier.
In this case, the complementary KKT condition implies that β ∗i = 0 and hence α∗i =C. Thus, support vectors xi
are either outliers, in which case α∗i =C, or they lie on the marginal hyperplanes. That is, we can write the support
vector as a union of disjoint sets

S = {i ∈ S : ξ
∗
i = 0}∪{i ∈ S : ξ

∗
i > 0}= {i ∈ S : yi(〈w∗,xi〉+b∗) = 1}∪{i ∈ S : α

∗
i =C} .

Remark 7. As in the separable case, note that while the weight vector w∗ solution is unique, the support vectors
are not.
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1.3 Dual optimization problem
In this section, we will show that the hypothesis h ∈ H and distance b can be expressed as inner products. To this
end, we look at the the dual form of the constrained primal optimization problem (1). Recall that the dual function
F(α) = infw,bL(w,b,α). The Lagrangian L is minimized at the optimal primal variables (w∗,b∗) such that

∇wL(w∗,b∗,ξ ∗) = ∇bL(w∗,b∗,ξ ∗) = ∇ξL(w∗,b∗,ξ ∗) = 0.

Using this condition, we can write the optimal normal vector w∗ = ∑
m
i=1 αiyixi in terms of the dual variables

α ∈ Rm
+, together with the constraints ∑

m
i=1 αiyi = 0 and C = αi +βi for all i ∈ [m].

Definition 1.4 (Gram matrix). For a labeled sample z ∈ (X× Y)m, we can define a Gram matrix A ∈ Rm×m

defined by the (i, j)th entries Ai j ,
〈
yixi,y jx j

〉
for all i, j ∈ [m].

Remark 8. The matrix A is the Gram matrix associated with vectors (y1x1, . . . ,ymxm) and hence is positive
semidefinite.

Substituting w∗ = ∑
m
i=1 αiyixi, the constraints ∑

m
i=1 αiyi = 0 and C = α + β , and the definition of Gram

matrix A, in the Lagrangian L(w∗,b∗,α), we can write the dual function as F(α) = L(w∗,b∗,α) = ∑
m
i=1 αi−

1
2 ∑

m
i=1 ∑

m
j=1 αiAi jα j. The constraints are αi > 0 together with βi > 0 to get αi 6C, and ∑

m
i=1 αiyi = 0. Therefore,

we can write the dual SVM optimization problem as

max
α
‖α‖1−

1
2

α
T Aα (3)

subject to: C > αi > 0, for all i ∈ [m], and
m

∑
i=1

αiyi = 0.

The objective function G : α 7→ ‖α‖1− 1
2 αT Aα is infinitely differentiable, and its Hessian is given by ∇2G =

−A � 0, and hence G is a concave function. Since the constraints are affine and convex, the dual maximization
problem (3) is equivalent to a convex optimization problem. Since G is a quadratic function of Lagrange variables
α , this dual optimization problem is also a quadratic program, as in the case of the primal optimization. Since
the constraints are affine, they are qualified and strong duality holds. Thus, the primal and dual problems are
equivalent, i.e., the solution α∗ of the dual problem (3) can be used directly to determine the hypothesis returned
by SVMs. The solution α∗ of the dual problem can be used to return the SVM hypothesis

h(x) = sign(〈w∗,x〉+b∗) = sign

(
m

∑
j=1

α
∗
j y j
〈
x j,x

〉
+b∗

)
.

Recall that for all xi ∈ S∩{ξi = 0}, we have 〈w∗,xi〉+b∗ = 1. Hence, the constant b∗ is given by

b∗ = yi−
m

∑
j=1

α
∗
j y j
〈
x j,xi

〉
, for any xi such that 0 < α

∗
i <C.
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