Lecture-06: Reproducing Kernel Hilbert Space (RKHS)

1 Reproducing Kernel Hilbert Space (RKHS)

Lemma 1.1 (Cauchy-Schwarz inequality for PDS kernel). Let K be a PDS kernel. Then

$$K^2(x,x') \leq K(x,x)K(x',x')$$
 for all $x,x' \in \mathfrak{X}$.

Proof. We can write the following Gram matrix for samples x, x' and PDS kernel K as

$$\mathbf{K} = \begin{bmatrix} K(x,x) & K(x,x') \\ K(x',x) & K(x',x') \end{bmatrix}.$$

Since *K* is a PDS Kernel, the Gram matrix **K** is symmetric and positive semi-definite. In particular, K(x,x') = K(x',x) and the det(**K**) ≥ 0 . Hence, the result follows.

Definition 1.2. For any PDS kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, we can define a kernel evaluation map $\Phi_x : \mathcal{X} \to \mathbb{R}$ at a point $x \in \mathcal{X}$ by $\Phi_x(y) \triangleq K(x, y)$ for all $y \in \mathcal{X}$.

Definition 1.3. We can define a pre-Hilbert space \mathbb{H}_0 as the span of kernel evaluations at finitely many elements of \mathfrak{X} . That is,

$$\mathbb{H}_0 \triangleq \left\{ \sum_{i \in I} a_i \Phi_{x_i} : I \text{ finite } , a \in \mathbb{R}^I, x \in \mathfrak{X}^I \right\} \subseteq \mathbb{R}^{\mathcal{X}}.$$

The completion of \mathbb{H}_0 is a complete Hilbert space denoted by \mathbb{H} .

Theorem 1.4 (RKHS). Let $K : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ be a PDS kernel. Then, there exists a Hilbert space \mathbb{H} and a mapping $\Phi : \mathfrak{X} \to \mathbb{H}$ such that for all $x, x' \in \mathfrak{X}$,

$$K(x,x') = \left\langle \Phi(x), \Phi(x') \right\rangle_{\mathbb{H}}$$

Furthermore, \mathbb{H} *has the following reproducing property, for all* $h \in \mathbb{H}$ *and* $x \in \mathfrak{X}$ *,*

$$h(x) = \langle (h(\cdot), K(x, \cdot)) \rangle_{\mathbb{H}}$$

The Hilbert space \mathbb{H} is called the RKHS associated with the kernel K.

Remark 1. We make the following observations from the Theorem statement.

- 1. The Hilbert space $\mathbb{H} \subseteq \mathbb{R}^{\mathcal{X}}$.
- 2. For any $x \in \mathcal{X}$, we have $K(x, \cdot) \in \mathbb{H}$.

Proof. For any $x \in \mathcal{X}$, define $\Phi_x : \mathcal{X} \to \mathbb{R}$ such that $\Phi_x(x') = K(x, x')$. Then, we define a map $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \to \mathbb{R}$ such that fo $f = \sum_{i \in I} a_i \Phi_{x_i}$ and $g = \sum_{j \in J} b_j \Phi_{x_j}$, we have

$$\langle f,g \rangle_{\mathbb{H}_0} \triangleq \sum_{i \in I} \sum_{j \in J} a_i b_j K(x_i, x_j) = \sum_{j \in J} b_j f(x_j) = \sum_{i \in I} a_i g(x_i).$$

We can verify that the $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \to \mathbb{R}$ has the follow properties.

- 1. **Symmetry**: By definition, $\langle \cdot, \cdot \rangle$ is symmetric.
- 2. **Bilinearity**: $\langle \cdot, \cdot \rangle$ is bilinear. Can you show that $\langle \alpha f + \beta h, g \rangle = \alpha \langle f, g \rangle + \beta \langle f, g \rangle$?
- 3. Positive semi-definiteness: For any $f \in \mathbb{H}_0$, we have $f = \sum_{i \in I} a_i \Phi_{x_i}$ and since the Gram matrix **K** is symmetric and positive semidefinite for kernel *K* and samples $S = (x_i : i \in I)$, we have

$$\langle f, f \rangle = \sum_{i \in I} \sum_{j \in I} a_i a_j K(x_i, x_j) = a^T \mathbf{K} a \ge 0.$$

4. **Reproducing property:** Let $f \in \mathbb{H}_0$ and $f = \sum_{i \in I} a_i \Phi_{x_i}$. Then,

$$\langle f, \Phi_x \rangle = \sum_{i \in I} a_i K(x_i, x) = \sum_{i \in I} a_i \Phi_{x_i}(x) = f(x).$$

5. **Definiteness:** We will show that for any $f \in \mathbb{H}_0$ and $x \in \mathcal{X}$, we have bounded f(x). From the reproducing property, it suffices to show that $\langle f, \Phi_x \rangle^2 \leq \langle f, f \rangle \langle \Phi_x, \Phi_x \rangle$ for any $x \in \mathcal{X}$. Can you show that $\langle \cdot, \cdot \rangle$ is a PDS kernel? Then the result will follow from Lemma 1.1.

From properties 1,2,3,5, it follows that \mathbb{H}_0 is a pre-Hilbert space which can be made complete to form the Hilbert space $\mathbb{H} = \overline{\mathbb{H}}_0$, where \mathbb{H}_0 is dense in \mathbb{H} . This Hilbert space \mathbb{H} is the RKHS associated with the kernel *K*.

1.1 Representer theorem

Observe that modulo the offset *b*, the hypothesis solution of SVMs can be written as a linear combination of the functions $K(x_i, \cdot)$, where x_i is a sample point. The following theorem known as the representer theorem shows that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs with no offset.

Theorem 1.5 (Representer theorem). Let $K : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ be a PDS kernel and \mathbb{H} its corresponding RKHS. Then for any non decreasing function $G : \mathbb{R} \to \mathbb{R}$ and any loss function $L : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$, the optimization problem

$$\arg\min_{h\in\mathbb{H}}F(h) = \arg\min_{h\in\mathbb{H}}G(\|h\|_{\mathbb{H}}) + L(h(x_1),\ldots,h(x_m)),$$

has a solution of the form $h^* = \sum_{i=1}^m \alpha_i K(x_i, \cdot)$. If G is strictly increasing, then any solution has this form.

Proof. Let $\mathbb{H}_1 = \text{span}(K(x_i, \cdot) : i \in [m])$. We can write the RKHS \mathbb{H} as the direct sum of span of \mathbb{H}_1 and the orthogonal space \mathbb{H}_1^{\perp} , i.e. $\mathbb{H} = \mathbb{H}_1 \oplus \mathbb{H}_1^{\perp}$. Hence, any hypothesis $h \in \mathbb{H}$, can be written as $h = h_1 + h_1^{\perp}$. Since *G* is non-decreasing

$$G(\|h_1\|_{\mathbb{H}}) \leq G(\sqrt{\|h_1\|_{\mathbb{H}}^2} + \|h_1^{\perp}\|_{\mathbb{H}}^2) = G(\|h\|_{\mathbb{H}}).$$

By the reproducing property, we have for all $i \in [m]$

$$h(x_i) = \langle h, K(x_i, \cdot) \rangle = \langle h_1, K(x_i, \cdot) \rangle = h_1(x_i).$$

Therefore, $L(h(x_1), \ldots, h(x_m)) = L(h_1(x_1), \ldots, h_1(x_m))$, and hence $F(h_1) \leq F(h)$. If *G* is strictly increasing, then $F(h_1) < F(h)$ when $||h_1^{\perp}||_{\mathbb{H}} > 0$ and any solution of the optimization problem must be in \mathbb{H}_1 .

2 Empirical Kernel Map

Advantages of working with kernel is that no explicit definition of a feature map Φ is needed. Following are the advantages of working with explicit feature map Φ .

- (i) For primal method in various optimization problems.
- (ii) To derive an approximation based on Φ .
- (iii) Theoretical analysis where Φ is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample $x \in \mathcal{X}^m$ and a PDS kernel K, the associated **empirical kernel map** $\Phi : \mathcal{X} \to \mathbb{R}^m$ is a feature mapping defined for all $y \in \mathcal{X}$ by

$$\Phi(y) = \begin{bmatrix} K(y, x_1) \\ \vdots \\ K(y, x_m) \end{bmatrix}$$

Remark 2. The empirical kernel map evaluated at a point $y \in X$ is the vector of *K*-similarity measure of *y* with each of the *m* training points.

Remark 3. For any $i \in [m]$, we have $\Phi(x_i) = \mathbf{K}e_i$, where e_i is the *i*-th unit vector. Hence, $\langle \mathbf{K}e_i, \mathbf{K}e_j \rangle = \langle e_i, \mathbf{K}^2e_j \rangle$. That is, the kernel matrix associated with the empirical kernel map Φ is \mathbf{K}^2 .

Definition 2.2. Let \mathbf{K}^{\dagger} denote the pseudo-inverse of the gram matrix \mathbf{K} and let $(\mathbf{K}^{\dagger})^{\frac{1}{2}}$ denote the SPSD matrix whose square is \mathbf{K}^{\dagger} . We define a feature map $\Psi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ using the empirical kernel map Φ and the matrix $(\mathbf{K}^{\dagger})^{\frac{1}{2}}$ as

$$\Psi(x) = (\mathbf{K}^{\dagger})^{\frac{1}{2}}$$
, for all $x \in \mathfrak{X}$.

Remark 4. Using the identity $\mathbf{K}\mathbf{K}^{\dagger}\mathbf{K} = \mathbf{K}$, we see that

$$\langle \Psi(x_i), \Psi(x_j) \rangle = \langle (\mathbf{K}^{\dagger})^{\frac{1}{2}} \Phi(x_i), (\mathbf{K}^{\dagger})^{\frac{1}{2}} \Phi(x_j) \rangle = \langle \mathbf{K} e_i, \mathbf{K}^{\dagger} \mathbf{K} e_j \rangle = \langle e_i, \mathbf{K} e_j \rangle.$$

Thus, the kernel matrix associated to map Ψ is **K**.

Remark 5. For the feature mapping $\Omega : \mathfrak{X} \to \mathbb{R}^m$ defined by $\Omega(x) = \mathbf{K}^{\dagger} \Phi(x)$ for all $x \in \mathfrak{X}$, we check that the

$$\langle \Omega(x_i), \Omega(x_j) \rangle = \langle \mathbf{K}^{\dagger} \Phi(x_i), \mathbf{K}^{\dagger} \Phi(x_j) \rangle = \langle \mathbf{K} e_i, \mathbf{K}^{\dagger} e_j \rangle = \langle e_i, \mathbf{K} \mathbf{K}^{\dagger} e_j \rangle.$$

Thus, the kernel matrix associated to map Ω is **KK**[†].

3 Kernel-based algorithms

We can generalize SVMs in the input space \mathfrak{X} to the SVMs in the feature space \mathbb{H} mapped by the feature mapping Φ . Recall that $K(y,z) = \langle \Phi(y), \Phi(z) \rangle_{\mathbb{H}}$ for all $y, z \in \mathfrak{X}$, and hence the gram matrix **K** generated by the kernel map K and the unlabeled training sample $x \in \mathfrak{X}^m$ suffices to describe the SVM solution completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors $x, y \in \mathbb{R}^m$ as $x \circ y \in \mathbb{R}^m$ such that $(x \circ y)_i = x_i y_i$ for all $i \in [m]$.

Remark 6. We can write the dual problem for non-separable training data in this high dimensional space \mathbb{H} as

$$\max_{\alpha} \mathbf{1}^T \alpha - \frac{1}{2} (\alpha \circ y)^T \mathbf{K} (\alpha \circ y)$$

subject to: $0 \leq \alpha \leq C$ and $\alpha^T y = 0$.

The solution hypothesis *h* can be written as $h(x) = \text{sign}(\sum_{i=1}^{m} \alpha_i y_i K(x_i, x) + b)$, where $b = y_i - (\alpha \circ y)^T \mathbf{K} e_i$ for all x_i such that $0 < \alpha_i < C$.