Lecture-07: PAC Learning

1 PAC learning model

Definition 1.1 (PAC-learning). A concept class C C YX is said to be PAC-learnable if there exists an algorithm A
and a polynomial function poly(-, -, -,-) such that for any € > 0 and & > 0, for all distributions D on input space X

and for any target concept ¢ € C, the following holds for any sample z € (X x Y)™ of size m > poly(é7 %,n, size(c)):

P{R(h) <€} >1-6.

If A further runs in poly(é7 %,n,size(c)), then C is said to be efficiently PAC-learnable. When such an algorithm
A exists, it is called a PAC-learning algorithm for C.

Remark 1. The cost of computational representation of an input vector x € X is of order n, and of a concept c is
of order size(c).

Remark 2. A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm after observing
a number of points polynomial in é and % is approximately correct (error at most €) with high probability (at
least 1 — &), which justifies the PAC terminology. The 6 > 0 is used to define the confidence 1 — 0 and € > 0 the
accuracy 1 — €. Note that if the running time of the algorithm is polynomial in é and 1, then the sample size m
must also be polynomial if the full sample is received by the algorithm.
Remark 3. The following statements are true for the PAC framework.

1. Itis a distribution-free model.

2. The training sample and the test examples are drawn from the same distribution D.
3. It deals with the question of learnability for a concept class C and not a particular concept.

2 Guarantees for finite hypothesis sets — consistent case

Theorem 2.1 (Learning bounds — finite H, consistent case). Let H C Y~ be a finite set of functions. Let A

be an algorithm that for any target concept ¢ € H and i.i.d. sample z € (X X Y)™ returns a consistent hypothesis
h, € H such that R(h;) = 0. Then, for any £,8 > 0, the inequality P{R(h.) < €} > 1 — & holds if

1 1
m> — (ln|H|+ln) )
€ 1)
This sample complexity result admits the following equivalent statement as a generalization bound, for any €, >
0, with probability at least 1 — §

1 1
R(h;) < — (ln|H +ln5) .

Proof. Fix € > 0. We provide a uniform convergence bound for all consistent hypotheses %, € H, since we don’t
know which of these is selected by the algorithm A. For a given hypothesis 4 and any unlabeled training sample
X € X drawn i.i.d. from the same distribution D, the probability of getting zero empirical risk is

P{R() =0} = (A", {h(X;) = ¥;} = ﬁp{h(x» ¥} = (1 R(R)"

Consider any h € H such that R(h) = E1 {(h(x)+r} > €, then the probability for any sample z € (X x Y)™ drawn
i.i.d. from the same distribution D with zero empirical risk is

P (Uner {R(h) =0}) < Y P{R(h)=0}.
heH
We can upper bound the probability of a hypothesis being consistent in terms of its generalization risk. Consider
any h € H such that R(h) = E1yx).y} > €, then P{R(h;) =0} < (1—¢)™. The result follows from substituting
this bound in the union bound. O



3 Guarantees for finite hypothesis sets — inconsistent case

In many practical cases, the hypothesis set H may not consist of the target concept ¢ € C.

Corollary 3.1 (Hoeffding). Fix € > 0 and let z € (X x {0,1})™ be an i.i.d. sample of size m. Then, for any
hypothesis h : X — {0, 1}

P{R(h)—R 8} exp(—2me?), P{R(h) —R(h) < —¢&} < exp(—2me?).
(h)| = &} <2exp(—2me?).

Proof. Recall thatR( y=41 o it Liy2n(x,)y and R(h) = ER(h). We get the results by taking the random variables
Ly, 2n(x;)) € {0,1}, and applymg TheoremWIth o’ =m. O

Corollary 3.2 (Generalization bound — single hypothesis). For a hypothesis h: X — {0,1} and any 6 > 0, the

following inequality holds with probability at least 1 — &

RO < R(hy + ] 22
< + o

Theorem 3.3 (Learning bound — finite H, inconsistent case). Let H be a finite hypothesis set. Then, for any

6 > 0, with probability at least 1 — 8,

" In|H|+1n%
R(h) <R(h)+ zi,forallh €EH.
m

Proof. Let hy,... hyy be the elements of H. Using the union bound and applying the generalization bound, we
get
P(Upen {R(h) —R(h) > €}) < Y P{R(h) ) > &} < 2|H|exp(—2me?).
heH
Setting the right-hand side to be equal to 6 completes the proof. O

Remark 4. We observe the following from the upper bound on the generalized risk.

1. For finite hypothesis set H,
N log, |H
RO < (W) +0 ( /0g2|>
m

The number of bits needed to represent H is log, |H]|.
A larger sample size m guarantees better generalization.
The bound increases logarithmically with |H]|.

. . . /1o log, |H
The bound is worse for inconsistent case g2| | compared to °g2| | for the consistent case.

AR

is needed.

7. The bound suggests seeking a trade-off between reducing the empirical error versus controlling the size of
the hypothesis set: a larger hypothesis set is penalized by the second term but could help reduce the empirical
error, that is the first term. But, for a similar empirical error, it suggests using a smaller hypothesis set.

4 Generalities

4.1 Deterministic versus stochastic scenarios

Consider the stochastic scenario where the distribution D is defined over X x Y. The training data is a labeled
sample T = ((X;,Y;) : i € [m]) drawn i.i.d. from the distribution D. The learning problem is to find a hypothesis
h € H with small generalization error

R(h) = P{h(X) #Y} = E[Lijx)2r}]-
Definition 4.1 (Agnostic PAC-learning). Let H be a hypothesis set. An algorithm A is an agnostic PAC-learning

algorithm if there exists a polynomial function poly(:,-,-,-) such that for any € > 0 and 6 > 0, for all distributions
D over X x Y, the following holds for any sample size m > poly(2, 5 ,n,size(c))

P {R(hg) —minR(h) < e} >1-6.

heH

Further, if the algorithm A runs in poly(L & 5 ,n,size(c)), then it is said to be an efficient agnostic PAC-learning
algorithm.



4.2 Bayes error and noise

In the deterministic case, by definition, there exists a target function ¢ : X — Y with no generalization error
R(h) = 0. In the stochastic case, there is a minimal non-zero error for any hypothesis.

Definition 4.2 (Bayes error). Given a distribution D over X x Y, the Bayes error R* is defined as the infimum of
the errors achieved by measurable functions /2 : X — Y

R*= inf R(h).

h measurable
A hypothesis & with R(h) = R* is called a Bayes hypothesis or Bayes classifier.

In the deterministic case, we have R* = 0, however R* # 0 in the stochastic case. Recall that

R(h) = ELyx) vy = / . AP) Z:,dp(ﬂx)ﬂ{w#y}-
JX yg

The Bayes classifier 4p can be defined in terms of the conditional probabilities as

hp(x) = argmag(P(y|x), for all x € X.
ye

The average error made by s on x € X is thus min {Zzey:#yP(z\x) }, and this is the minimum possible error.

Definition 4.3 (Noise). For binary classification Y = {0, 1}, given a distribution D over X x Y, the noise at point
x € X is defined by
n(x) = min{P(1]x),P(0]x)}.

The average noise or the noise associated to D is E[n(X)].
Remark 5. The average noise is the Bayes error, i.e. E[n(X)] = R*. The noise determines the difficulty of the

learning task.

4.3 Estimation and approximation errors

For a hypothesis set H, we let 1" be the best-in-class hypothesis in the H with minimal error. Then, the difference
between the generalization risk and Bayes error can be written as

R(h) —R* = R(h) — R(h*) + R(h*) — R*.

Definition 4.4. The second term R(h*) — R* is called the approximation error, and is a measure of how well the
Bayes error can be approximated by the class H.

Approximation error is a measure of the richness of the hypothesis set H, and not available in general.

Definition 4.5. The first term R(h) — R(h*) is called the estimation error, and measures the performance of
hypothesis /& with respect to best-in-class hypothesis.

The definition of agnostic PAC-learning is also based on the estimation error. The estimation error of the
hypothesis /g returned by the algorithm A after training on a sample S, can sometimes be bounded in terms of the
generalization error.

Example 4.6 (Empirical risk minimization (ERM)). Let h% denote the hypothesis & € H that minimizes the
empirical risk for the labeled sample 7. In particular, Rh? < R(h*) and we can write

R(h) —R(h*) = R(h}) — R(h%) + R(hF) — R(h*) < R(h§) — R(hF) +R(h*) — R(h*) < 2sup [R(h) — R(h)|.
heH

The upper bound can be bounded by the learning bounds and increases with the size of the hypothesis set |H|,
while the Bayes error R(h*) decreases with |H|.



4.4 Model selection

Example 4.7 (Structural risk minimization (SRM)). Consider an infinite sequence of hypothesis sets with
increasing sizes H, C H,1 for all n > 0. For each H,,, we can find the ERM solution hf and complexity term
¢(H,,m). Then,
hy =arg min (Rp(h)+c(H,,m)).
heH, ,neN

If Ry (h) = 0 for some h € H,, then Ry (h) = O for all H,, m > n.

Example 4.8 (Regularized risk minimization). An alternative family of algorithms is based on a more straight-
forward optimization that consists of minimizing the sum of the empirical error and a regularization term that
penalizes more complex hypotheses. The regularization term is typically defined as ||2||* for some norm ||-|| when
H is a vector space, and
K = argmin Ry (h) + A |||,
heH

where A > 0 is a regularization parameter, which can be used to determine the trade-off between empirical error
minimization and control of the complexity. In practice, A is typically selected using n-fold cross-validation.

A Hoeffding’s lemma

Lemma A.1 (Hoeffding). Ler X be a zero-mean random variable with X € [a,b] for b > a. Then, for any t > 0,
we have

2<b7a)2
E[e!*] < e s

Proof. From the convexity of the function f(x) = ', we have for any x = Aa+ (1 —A)b € [a,b] for A = ,l:%z €
[0,1]

_b—x ,, x—a g

“h-a® Thoat

Since E[X] = 0, taking expectation on both sides, we get from the linearity of the expectations

e = flx) <Af(a)+(1-21)f(b)

b _
E[e*¥] < 2t _aae’b =),

where the function ¢ (¢) is given by

_ b —da t(b—a)
q)(t)—ta—Hn(b_a-i-b_ae .

We can write the first two derivatives of this function ¢ (¢) as

ae'(b=4) a
¢/(t) =a— % — ﬁe’(b—“) =a fae—’“’_“) — fa )
L ( a_ ) < (1—ape @ ) O
(G etlb-a) — 42 (1—a)e -9 4 ¢ (1—a)e't-a) + ) 4
where we have denoted & = ;=% > 0 since E[X] = 0. The result follows from the second order expansion of ¢(z),

such that we get for some 6 € [0,7]

(b—a)’
e

2
0(1) = 0(0)+19'(0) + 547(0) <
O

Theorem A.2 (Hoeffding). Ler (X; € [a;,b;] : i € [m]) be a vector of m independent random variables, and define
o= Y (bi— a;)?. Then, for any € > 0 and S,, = Y | X;, we have

2¢? 2¢e2
P{Su—ESn>e} <exp(——5 | P{Sn—ESy < —g} <exp(—"7 ).



Proof. From the definition of indicator sets and for any increasing function ¢ : R — R, we can write for any
random variable X

O(X) = 0(X)Lixzey = 0 (X)L x)50(e) = 9(€) Lixse}-

Taking the random variable S,, — E[S,,] and ¢ (x) = ¢'¥, and taking expectation on both sides, we get the Chernoff
bound

P{Sy—ES, >¢e} <e Elexp(t(Sn —ESn))] =€ ﬁE[exp(l(X,- —EX;))]
i=1

et ) ) 202 2¢2
< e Jexp(i?(bi—ai)?/8) = e+ ) < ).
e i:lexp( ( a;)”/8) exp( + 3 > exp< 62>

The first equality follows from the i.i.d. nature of (X; : i € [m]), the following inequality follows from Lemma

the equality follows from the definition of 62, and the last inequality from 7* = %. O
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