
Lecture-08: Growth functions and VC-dimension

1 Growth function
Rademacher complexity can be bounded in terms of the growth function. For any hypothesis h ∈ H and an m-
sized unlabeled sample set S = {x1, . . . ,xm} ⊆ X, we denote the range hS , (h(x1), . . . ,h(xm)) ∈ Ym. For different
hypothesis h ∈ H and a fixed m-sized sample set S, we get a set of m-length Y-valued sequences {hS : h ∈ H}.

Definition 1.1 (Dichotomy). Given a hypothesis set H, a dichotomy of a set S is one of the possible ways of
labeling the points of S using a hypothesis in H.

Definition 1.2 (Growth function). For a hypothesis set H, the growth function ΠH : N→ N is defined as

ΠH(m), max
S⊆X:|S|=m

|{hS : h ∈ H}| .

Remark 1. Following is true for growth function.

(a) It is the maximum number of distinct ways in which m points can be classified using hypotheses in H.

(b) It is the maximum number of dichotomies for m points using hypotheses in H.

(c) It is a measure of richness of the hypothesis set H.

(d) It is a purely combinatorial measure, and unlike Rademacher complexity, it doesn’t depend on the unknown
distribution D.

Lemma 1.3 (Massart’s lemma). Let A⊂ Rm be a finite set with r = maxx∈A ‖x‖2, then
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where σ : Ω→{−1,1}m is an independent Rademacher random vector.

Proof. For any t > 0, using Jensen’s inequality for the convex function f (x)= etx, rearranging terms, and bounding
the supremum of positive numbers by its sum, we obtain
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From the independence of Rademacher random vector σ , the application of Hoeffding lemma to random variables
−txi 6 tσixi 6 txi, and the definition of r, we get
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Summarizing our results, taking the natural log of both sides and dividing by t, we get
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The upper bound is minimized by taking t∗ =
√

2ln|A|
r . We get the result by dividing the both sides of this mini-

mized upper bound by m.

Corollary 1.4. Let G⊂ {−1,1}X be a family of functions, then
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√
2lnΠG(m)

m
.
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Proof. For a fixed sample S = (x1, . . . ,xm) ∈ Xm, we denote

G|S , {gS = (g(x1), . . . ,g(xm))) : g ∈ G} .

Since g ∈ G takes values in {−1,1}, the norm of these vectors is bounded by
√

m. Applying Massart’s lemma to
the set G, we get
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]
.

By definition, we have |G|S|6 ΠG(m), and hence the result follows.

Corollary 1.5 (Growth function generalization bound). Let H ⊂YX be a family of functions where Y= {−1,1}.
Then, for any δ > 0, with probability at least 1−δ , for any hypothesis h ∈ H
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.

Remark 2. Growth function bounds can be also derived directly without using Rademacher complexity bounds.
The resulting bound is

P
{∣∣R(h)− R̂(h)

∣∣> ε
}
6 4ΠH(2m)e−

mε2
8 .

The generalization bound obtained from this bound differs from Corollary 1.5 only in constants.

Remark 3. The computation of the growth function may not be always convenient since, by definition, it requires
computing ΠH(m) for all m ∈ N.

2 Vapnik-Chervonenkis (VC) dimension
The VC-dimension is also a purely combinatorial notion but it is often easier to compute than the growth function
or the Rademacher Complexity. We will consider the target space Y= {−1,1} in the following.

Definition 2.1 (Shattering). A set S of m∈N points is said to be shattered by a hypothesis set H when H realizes
all possible dichotomies of S, that is when ΠH(m) = 2m.

Definition 2.2 (VC-dimension). The VC-dimension of a hypothesis set H is the size of the largest set that can
be fully shattered by H. That is,

VCdim(H), max{m ∈ N : ΠH(m) = 2m} .

Remark 4. By definition, if VCdim(H) = d, there exists a set of size d that can be fully shattered. This does not
imply that all sets of size d or less are fully shattered, in fact, this is typically not the case.

Remark 5. To compute the VC- dimension we will typically show a lower bound for its value and then a matching
upper bound. To give a lower bound d for VCdim(H), it suffices to show that a set S of cardinality d can be
shattered by H. To give an upper bound, we need to prove that no set S of cardinality d+1 can be shattered by H,
which is typically more difficult.

Example 2.3 (Intervals on the real line). Consider a hypothesis set H of separating intervals on real line

H ,
{

h ∈ {−1,1}R : h = 1{[a,b]}−1{[a,b]c},a,b ∈ R
}
.

Then d > 2, since (1,1),(−1,−1),(1,−1),(−1,1) can all be realized by S = {x1,x2}. Further, there is no
sample S = {x1,x2,x3} such that x1 6 x2 6 x3 and hS = (1,−1,1). That is, no set of three points can be
shattered, and hence VCdim(H) = 2.
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Example 2.4 (Hyperplanes in R2). Consider a hypothesis set H of separating hyperplanes in R2

H ,
{

h ∈ {−1,1}R
2

: h = sign(w1x1 +w2x2 +b),w ∈ R2,b ∈ R
}
.

Lower bound: VCdim(H) > 3: Any three non-collinear points in R2 can be shattered. To obtain the first
three dichotomies, we choose a hyperplane that has two points on one side and the third point on the opposite
side. Fourth dichotomy has all three points on the same side of the hyperplane. Rest four dichotomies can be
obtained by permutation of signs.
Upper bound: VCdim(H)< 4: Four points cannot be shattered by considering two cases:

(i) The four points lie on the convex hull defined by the four points. A positive labeling for one diagonal
pair and a negative labeling for the other diagonal pair cannot be realized

(ii) Three of the four points lie on the convex hull and the remaining point is internal. A labeling which is
positive for the points on the convex hull and negative for the interior point cannot be realized.

Theorem 2.5 (Radon). Any set X ⊂ Rd with |X |= d +2 can be partitioned into two subsets X1 and X2 such that
the convex hulls of X1 and X2 intersect.

Proof. Let X = {x1, . . . ,xd +2} ⊂ Rd . The following is a system of d +1 linear equations in α ∈ Rd+2

d+2

∑
i=1

αixi = 0,
d+2

∑
i=1

αi = 0,

since first equality lead to d equations, one for each component. The number of unknowns α is larger than the
number of equations, therefore the system admits a non-zero solution β ∈ Rd+2 such that ∑

d+2
i=1 βi = 0. We find

the non-empty sets

I+ , {i ∈ [d +2] : βi > 0} , I− , {i ∈ [d +2] : βi < 0} .

Thus, we can find partition of the set X as X1 = {xi ∈ X : i ∈ I+} and X2 = {xi ∈ X : i ∈ I−}. We define b ,
∑i∈I+ βi = ∑i∈I−−βi, then we have

y = ∑
i∈I+

βi

b
xi = ∑

i∈I−

−βi

b
xi,

where ∑i∈I+
βi
b = ∑i∈I−

−βi
b = 1 and βi

b > 0 for all i∈ I+ and −βi
b > 0 for all i∈ I−. Thus, we have found an element

y in the convex hull of both sets X1 and X2.

Example 2.6 (Hyperplanes). Consider the hypothesis set H to be the set of separating hyperplanes in Rd ,
i.e.

H ,
{

h ∈ {−1,1}R
d

: h(x) = sign(〈w,x〉+b) ,w ∈ Rd ,b ∈ R
}
.

Lower bound: VCdim(H)> d +1:
We take a sample S = {0,e1, . . . ,ed} ⊆Rd . Let y = (y0, . . . ,yd)∈ {−1,1}d+1, then we will find w∈Rd ,b∈R
such that h(xi) = yi for each i ∈ {0, . . . ,d}. We choose w = (y1, . . . ,yd) and b = y0

2 , then

sign(〈w,xi〉+b) = sign
(

yi1{i 6=0}+
y0

2

)
= yi for each i ∈ {0, . . . ,d} .

Upper bound: VCdim(H)< d +2:
To obtain an upper bound, it suffices to show that no set of (d + 2) points can be shattered by separating
hyperplanes. From the Radon theorem, for any set X of (d +2) points there exists a partition X1,X2 such that
their convex hulls intersect. Therefore, there are no hyperplanes in Rd that separate X1 and X2. We define the
y ∈ {−1,1}d+2 such that for each i ∈ [d +2]

yi = 1X1(xi)−1X2(xi).

This dichotomy can’t be achieved by any separating hyperplane in Rd .
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Remark 6. The VC-dimension of any vector space of dimension r < ∞ can be shown to be at most r.

Theorem 2.7 (Sauer’s). Let H be a hypothesis set with VCdim(H) = d. Then, for all m ∈ N, we have

ΠH(d)6
d

∑
i=0

(
m
i

)
.

Proof. The proof is by induction on m+d. The statement clearly holds for m = 1 and d = 0 or d = 1. If d = 0,
then ΠH(1) < 2 for all points x ∈ X, which implies H consists of single function, and therefore the upper bound
of unity holds. If d = 1, then ΠH(2)< 4 and ΠH(1) = 2, and the upper bound of 1+m = 2 holds.

Now, assume that it holds for (m−1,d−1) and (m−1,d). Fix a set S = {x1, . . . ,xm} with ΠH(m) dichotomies
and let G = H|S be the set of concepts H induced by restriction to S.

Consider the subsample S′ = {x1, . . . ,xm−1} ⊂ S and denote projection operator π : RS → RS′ . We consider
the two family of functions

G1 = H|S′ = {π ◦g : g ∈ G} , G2 =
{

g′ ∈ G1 :
∣∣π−1 ◦g′

∣∣= 2
}
.

It follows that there exists functions g1,g2 ∈ G such that g1|S′ = g2|S′ . In particular, g1(xm) 6= g2(xm) but they
agree on all other points S′ ⊂ S. It follows that |G|= |G1|+ |G2|.

Since G1 ⊂ G, it follows that VCdim(G1) 6 VCdim(G) 6 d, then by the definition of growth function and
induction hypothesis,

|G1|6 ΠG1(m−1)6
d

∑
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i

)
.

Further, by definition of G2, if a set Z ⊆ S′ is shattered by G2, then the set Z∪{xm} is shattered by G. Therefore,

VCdim(G2)6 VCdim(G)−1 = d−1.

From the definition of growth function and induction hypothesis,
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)
.

Since |G|= |G1|+ |G2|, we have
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Hence, the result holds for (m,d).

Corollary 2.8. Let H be a hypothesis set with VCdim(H) = d, then

ΠH(m)6
(em

d

)d
= O(md), for all m > d.

Proof. For m > d and 0 6 i 6 d, we have (m
d )

d−i > 1. Further, the summation of positive terms over i ∈ {0, . . . ,d}
can be upper bounded by summation over i ∈ {0, . . . ,m}. Therefore,
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The last equality follows from the Binomial theorem and the following inequality from the fact that 1+x 6 ex for
all x ∈ R.

Remark 7. The growth function only exhibits two types of behavior,

(i) either VCdim(H) = d < ∞, in which case ΠH(m) = O(md),

(ii) or VCdim(H) = ∞, in which case ΠH(m) = 2m for all m ∈ N.

Corollary 2.9 (VC-dimension generalization bounds). Let H ⊂ {−1,1}X be a family of functions with VC-
dimension d. Then, for any δ > 0, with probability at least 1−δ

R(h)6 R̂(h)+

√
2d ln em

d
m

+

√
ln 1

δ

2m
, for all h ∈ H.
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Remark 8. (i) Generalization risk is of the form R(h)6 R̂(h)+O
(√

ln(m/d)
m/d

)
, which implies that the ratio m

d is
important.

(ii) Without the intermediate step of Rademacher complexity, a direct bound on generalization risk can be ob-
tained as

R̂(h)+

√
8d ln 2em

d +8ln 4
δ

m
.
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