Lecture-04: Random Variable

1 Random Variable

Definition 1.1 (Random variable). Consider a probability space (2, F,P). A random variable X : ) — R
is a real-valued function from the sample space to real numbers, such that for each x € R the event

Ax(x) 2 {weQ: X(w) <x} ={X<x} = X H—o0,x] = X 1(By) € 7.
We say that the random variable X is F-measurable.

Remark 1. Recall that the set Ax(x) is always a subset of sample space Q) for any mapping X : QO — R, and
Ax(x) € Fis an event when X is a random variable.

Example 1.2 (Constant function). Consider a mapping X : 3 — {c} C R defined on an arbitrary prob-
ability space (Q),J, P), such that X(w) = ¢ for all outcomes w € (). We observe that

@, x<c,
Q, x>c.

Ax(x) = X" (Bx) —{

That is Ax(x) € T for all event spaces, and hence X is a random variable and measurable for all event
spaces.

Example 1.3 (Indicator function). For an arbitrary probability space (Q),F,P) and an event A € &,
consider the indicator function 14 : Q3 — [0,1]. Let x € R, and By = (—o0, x], then it follows that

Q, x2>1,
Ax(x)=1,"(Bx) ={ A%, x€0,1),
0, x<0.

Thatis, Ax(x) € J for all x € R, and hence the indicator function 1 4 is a random variable.

Remark 2. Since any outcome w € () is random, so is the real value X(w).

Remark 3. Probability is defined only for events and not for random variables. The events of interest for
random variables are the lower level sets Ax (x) = {w: X(w) < x} = X!(By) for any real x.

Remark 4. Consider a probability space (Q2, ¥, P) and a random variable X : ) — R that is § measurable for
GC TF.If § C K, then X is also H measurable.

1.1 Distribution function for a random variable

Definition 1.4. For an ¥ measurable random variable X : ) — R defined on the probability space (Q0,F, P),
we can associate a distribution function (CDF) Fx : R — [0,1] such that for all x € R,

Fx(x) 2 P(Ax(x)) =P({X <x})=Po X !(—0o,x] = Po X (By).



Example 1.5 (Constant random variable). Let X : O — {c} C R be a constant random variable defined
on the probability space (), F, P). The distribution function is a right-continuous step function at c with
step-value unity. That is, Fx (x) = 1|« (x). We observe that P({X =c}) = 1.

Example 1.6 (Indicator random variable). For an indicator random variable 14 : QO — {0,1} defined
on a probability space (), F,P) and an event A € &, we have

1, x>1,
Fx(x)=¢1-P(A), x€]0,1),
0, x <0.

Lemma 1.7 (Properties of distribution function). The distribution function Fx for any random variable X sat-
isfies the following properties.

1. The distribution function is monotonically non-decreasing in x € R.

2. The distribution function is right-continuous at all points x € R.

3. The upper limit is limy_ 0o Fx (x) = 1 and the lower limit is limy_, _« Fx(x) = 0.
Proof. Let X be a random variable defined on the probability space (Q),F,P).

1. Let x1,x; € R such that x; < xp. Then for any w € A,,, we have X(w) < x1 < x2, and it follows that
w € Ay,. This implies that Ay, C Ay,. The result follows from the monotonicity of the probability.

2. For any x € R, consider any monotonically decreasing sequence x € RN such that lim,, x, = xo. It
follows that the sequence of events (A, = X~ !(—o0,x,] € F: n € N), is monotonically decreasing
and hence lim,cN Ax, = NpeNAx, = Ax,- The right-continuity then follows from the continuity of
probability, since

Fx(x0) = P(As,) = P(lim Ay,) = lim P(Ay,) = lim F(x,).

Xndx

3. Consider a monotonically increasing sequence x € RN such that lim, x,, = oo, then (A,, € F:n € N)
is a monotonically increasing sequence of sets and lim, Ay, = UyeN Ay, = Q). From the continuity of
probability, it follows that

xliinooFX(x”) = lirflnp(Axn) = P(lirrlnAxn) =P(Q)=1.
Similarly, we can take a monotonically decreasing sequence x € RN such that lim,, x, = —oo, then

(Ax, € F:n € N) is a monotonically decreasing sequence of sets and lim, Ay, = NyeNnAy, = D. From
the continuity of probability, it follows that limy, 0 Fx(x,) = 0.

O

Remark 5. If two reals x; < x; then Fx(x1) < Fx(x) with equality if and only if P{(x; < X < x,}) =0. This
follows from the fact that Ay, = Ay, UX 1 (x1,x7).

1.2 Event space generated by a random variable

Definition 1.8 (Event space generated by a random variable). Let X : () — R be an § measurable ran-
dom variable defined on the probability space (2, F, P). The smallest event space generated by the events
Ax(x) = X71(By) = X~ !(—00,x] for x € R is called the event space generated by this random variable X,
and denoted by ¢(X) £ o ({Ax(x) : x € R}).



Remark 6. The event space generated by a random variable is the collection of the inverse of Borel sets,
ie. o(X) = {X"Y(B):Be B(R)}. This follows from the fact that Ax(x) = X~ !(Bx) and the inverse map
respects countable set operations such as unions, complements, and intersections. That is, if B € B(R) =
oc({By:x €R}), then X 1(B) € c({Ax(x):x €R}). Similarly, if A € ¢(X) = c({Ax(x): x €R}), then
A = X"1(B) for some B € ¢({B, : x € R}).

Example 1.9 (Constant random variable). Let X : O — {c} C R be a constant random variable defined
on the probability space (Q2,F,P). Then the smallest event space generated by this random variable is
c(X) ={2,0}.

Example 1.10 (Indicator random variable). Let 14 be an indicator random variable defined on the
probability space (Q),F,P) and event A € F, then the smallest event space generated by this random
variable is 0(X) = 0({®, A%,Q}) = {D, A, A%, Q}.

1.3 Discrete random variables

Definition 1.11 (Discrete random variables). If a random variable X : Q) — X C R takes countable values on
real-line, then it is called a discrete random variable. That is, the range of random variable X is countable,
and the random variable is completely specified by the probability mass function

Px(x) =P({X=x}), forall x € X.

Example 1.12 (Bernoulli random variable). For the probability space (Q2, ¥, P), the Bernoulli random
variable is a mapping X : 3 — {0,1} and Px(1) = p. We observe that Bernoulli random variable is an
indicator for the event A £ X1 {1}, and P(A) = p. Therefore, the distribution function Fy is given by

Fx=(1-p)Ljg1) + Lje0)-

Lemma 1.13. Any discrete random variable is a linear combination of indicator function over a partition of the sample
space.
Proof. For a discrete random variable X : ) — X C R on a probability space (), F, P), the range X is count-

able, and we can define events Ey = {w € Q: X(w) = x} € F for each x € X. Then the mutually disjoint
sequence of events (Ey € F: x € X) partitions the sample space (). We can write

X(w) = X:;Cx]lEx(w).
O

Definition 1.14. Any discrete random variable X : O — X C R defined over a probability space (Q0,F,P),
with finite range is called a simple random variable.

Example 1.15 (Simple random variables). Let X be a simple random variable, then X =} cx x1 4, ()

where (Ax(x) = X! {x} € F: x € X) is a finite partition of the sample space Q. Without loss of gener-
ality, we can denote X = {x1,...,x, } where x; <... < xy,. Then,

Q, X 2 Xn,
X (—c0,x] = U§:1Ax(xj), x € [x5,xi11),i € [n—1],
@, x < xq.

Then the smallest event space generated by the simple random variable X is {UyesAx(x): S € X}.



1.4 Continuous random variables

Definition 1.16. For a continuous random variable X, there exists density function fx : R — [0,00) such
that

Fe() = [ ftu)du.

Example 1.17 (Gaussian random variable). For a probability space (), F,P), Gaussian random vari-
able is a continuous random variable X : () — R defined by its density function

_ 1 (x —p)?
fX(x)—\/EUexp<— 552 >,xEIR.
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