
Lecture-04: Random Variable

1 Random Variable

Definition 1.1 (Random variable). Consider a probability space (Ω,F, P). A random variable X : Ω→ R

is a real-valued function from the sample space to real numbers, such that for each x ∈R the event

AX(x), {ω ∈Ω : X(ω)6 x} = {X 6 x} = X−1(−∞, x] = X−1(Bx) ∈ F.

We say that the random variable X is F-measurable.

Remark 1. Recall that the set AX(x) is always a subset of sample space Ω for any mapping X : Ω→R, and
AX(x) ∈ F is an event when X is a random variable.

Example 1.2 (Constant function). Consider a mapping X : Ω→ {c} ⊆R defined on an arbitrary prob-
ability space (Ω,F, P), such that X(ω) = c for all outcomes ω ∈Ω. We observe that

AX(x) = X−1(Bx) =

{
∅, x < c,
Ω, x > c.

That is AX(x) ∈ F for all event spaces, and hence X is a random variable and measurable for all event
spaces.

Example 1.3 (Indicator function). For an arbitrary probability space (Ω,F, P) and an event A ∈ F,
consider the indicator function 1A : Ω→ [0,1]. Let x ∈R, and Bx = (−∞, x], then it follows that

AX(x) = 1
−1
A (Bx) =


Ω, x > 1,
Ac, x ∈ [0,1),
∅, x < 0.

That is, AX(x) ∈ F for all x ∈R, and hence the indicator function 1A is a random variable.

Remark 2. Since any outcome ω ∈Ω is random, so is the real value X(ω).

Remark 3. Probability is defined only for events and not for random variables. The events of interest for
random variables are the lower level sets AX(x) = {ω : X(ω)6 x} = X−1(Bx) for any real x.

Remark 4. Consider a probability space (Ω,F, P) and a random variable X : Ω→R that is G measurable for
G⊆ F. If G⊆H, then X is also H measurable.

1.1 Distribution function for a random variable

Definition 1.4. For an F measurable random variable X : Ω→R defined on the probability space (Ω,F, P),
we can associate a distribution function (CDF) FX : R→ [0,1] such that for all x ∈R,

FX(x), P(AX(x)) = P({X 6 x}) = P ◦ X−1(−∞, x] = P ◦ X−1(Bx).
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Example 1.5 (Constant random variable). Let X : Ω→ {c} ⊆R be a constant random variable defined
on the probability space (Ω,F, P). The distribution function is a right-continuous step function at c with
step-value unity. That is, FX(x) = 1[c,∞)(x). We observe that P({X = c}) = 1.

Example 1.6 (Indicator random variable). For an indicator random variable 1A : Ω→ {0,1} defined
on a probability space (Ω,F, P) and an event A ∈ F, we have

FX(x) =


1, x > 1,
1− P(A), x ∈ [0,1),
0, x < 0.

Lemma 1.7 (Properties of distribution function). The distribution function FX for any random variable X sat-
isfies the following properties.

1. The distribution function is monotonically non-decreasing in x ∈R.

2. The distribution function is right-continuous at all points x ∈R.

3. The upper limit is limx→∞ FX(x) = 1 and the lower limit is limx→−∞ FX(x) = 0.

Proof. Let X be a random variable defined on the probability space (Ω,F, P).

1. Let x1, x2 ∈ R such that x1 6 x2. Then for any ω ∈ Ax1 , we have X(ω) 6 x1 6 x2, and it follows that
ω ∈ Ax2 . This implies that Ax1 ⊆ Ax2 . The result follows from the monotonicity of the probability.

2. For any x ∈ R, consider any monotonically decreasing sequence x ∈ RN such that limn xn = x0. It
follows that the sequence of events

(
Axn = X−1(−∞, xn] ∈ F : n ∈N

)
, is monotonically decreasing

and hence limn∈N Axn = ∩n∈N Axn = Ax0 . The right-continuity then follows from the continuity of
probability, since

FX(x0) = P(Ax0) = P( lim
n∈N

Axn) = lim
n∈N

P(Axn) = lim
xn↓x

F(xn).

3. Consider a monotonically increasing sequence x ∈RN such that limn xn = ∞, then (Axn ∈ F : n ∈N)
is a monotonically increasing sequence of sets and limn Axn = ∪n∈N Axn = Ω. From the continuity of
probability, it follows that

lim
xn→∞

FX(xn) = lim
n

P(Axn) = P(lim
n

Axn) = P(Ω) = 1.

Similarly, we can take a monotonically decreasing sequence x ∈ RN such that limn xn = −∞, then
(Axn ∈ F : n ∈N) is a monotonically decreasing sequence of sets and limn Axn = ∩n∈N Axn = ∅. From
the continuity of probability, it follows that limxn→−∞ FX(xn) = 0.

Remark 5. If two reals x1 < x2 then FX(x1)6 FX(x2) with equality if and only if P{(x1 < X 6 x2}) = 0. This
follows from the fact that Ax2 = Ax1 ∪ X−1(x1, x2].

1.2 Event space generated by a random variable

Definition 1.8 (Event space generated by a random variable). Let X : Ω→ R be an F measurable ran-
dom variable defined on the probability space (Ω,F, P). The smallest event space generated by the events
AX(x) = X−1(Bx) = X−1(−∞, x] for x ∈ R is called the event space generated by this random variable X,
and denoted by σ(X), σ({AX(x) : x ∈R}).
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Remark 6. The event space generated by a random variable is the collection of the inverse of Borel sets,
i.e. σ(X) =

{
X−1(B) : B ∈ B(R)

}
. This follows from the fact that AX(x) = X−1(Bx) and the inverse map

respects countable set operations such as unions, complements, and intersections. That is, if B ∈ B(R) =
σ({Bx : x ∈R}), then X−1(B) ∈ σ({AX(x) : x ∈R}). Similarly, if A ∈ σ(X) = σ({AX(x) : x ∈R}), then
A = X−1(B) for some B ∈ σ({Bx : x ∈R}).

Example 1.9 (Constant random variable). Let X : Ω→ {c} ⊆R be a constant random variable defined
on the probability space (Ω,F, P). Then the smallest event space generated by this random variable is
σ(X) = {∅,Ω}.

Example 1.10 (Indicator random variable). Let 1A be an indicator random variable defined on the
probability space (Ω,F, P) and event A ∈ F, then the smallest event space generated by this random
variable is σ(X) = σ({∅, Ac,Ω}) = {∅, A, Ac,Ω}.

1.3 Discrete random variables

Definition 1.11 (Discrete random variables). If a random variable X : Ω→X⊆R takes countable values on
real-line, then it is called a discrete random variable. That is, the range of random variable X is countable,
and the random variable is completely specified by the probability mass function

PX(x) = P({X = x}), for all x ∈ X.

Example 1.12 (Bernoulli random variable). For the probability space (Ω,F, P), the Bernoulli random
variable is a mapping X : Ω→ {0,1} and PX(1) = p. We observe that Bernoulli random variable is an
indicator for the event A , X−1 {1}, and P(A) = p. Therefore, the distribution function FX is given by

FX = (1− p)1[0,1) + 1[1,∞).

Lemma 1.13. Any discrete random variable is a linear combination of indicator function over a partition of the sample
space.

Proof. For a discrete random variable X : Ω→ X⊂R on a probability space (Ω,F, P), the range X is count-
able, and we can define events Ex , {ω ∈Ω : X(ω) = x} ∈ F for each x ∈ X. Then the mutually disjoint
sequence of events (Ex ∈ F : x ∈ X) partitions the sample space Ω. We can write

X(ω) = ∑
x∈X

x1Ex (ω).

Definition 1.14. Any discrete random variable X : Ω→ X ⊆ R defined over a probability space (Ω,F, P),
with finite range is called a simple random variable.

Example 1.15 (Simple random variables). Let X be a simple random variable, then X = ∑x∈X x1AX(x)

where (AX(x) = X−1 {x} ∈ F : x ∈ X) is a finite partition of the sample space Ω. Without loss of gener-
ality, we can denote X= {x1, . . . , xn} where x1 6 . . . 6 xn. Then,

X−1(−∞, x] =


Ω, x > xn,
∪i

j=1 AX(xj), x ∈ [xi, xi+1), i ∈ [n− 1],

∅, x < x1.

Then the smallest event space generated by the simple random variable X is {∪x∈S AX(x) : S ⊆ X}.
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1.4 Continuous random variables

Definition 1.16. For a continuous random variable X, there exists density function fX : R→ [0,∞) such
that

FX(x) =
∫ x

−∞
fX(u)du.

Example 1.17 (Gaussian random variable). For a probability space (Ω,F, P), Gaussian random vari-
able is a continuous random variable X : Ω→R defined by its density function

fX(x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
, x ∈R.
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