
Lecture-06: Transformation of random vectors

1 Functions of random variables

Definition 1.1. Borel measurable sets on a space Rn is denoted by B(Rn) and generated by the collection
(π−1

i (−∞, x] : x ∈ R, i ∈ [n]). A function g : Rn → Rm is called Borel measurable function, if g−1(Bm) ∈
B(Rn) for any Bm ∈ B(Rm).

Proposition 1.2. Consider a random variable X : Ω→ R defined on the probability space (Ω,F, P). Suppose g :
R→R is function such that g−1(−∞, x] ∈ B(R), then g(X) is a random variable.

Proof. We represent g(X) by a map Y : Ω→ R such that Y(ω) , (g ◦ X)(ω) for all outcomes ω ∈ Ω. We
further check that for any half open set Bx = (−∞, x], we have Y−1(Bx) = (X−1 ◦ g−1)(Bx). Since g−1(Bx) ∈
B(R), it follows that Y−1(Bx) ∈ F by the definition of random variables.

Example 1.3 (Monotone function of random variables). Let g : R→ R be a monotonically increasing
function, then g−1(−∞, x] ∈ B(R) for all x ∈R. Consider a random variable X : Ω→R defined on the
probability space (Ω,F, P), then Y , g(X) is a random variable with distribution function

FY(y) = P{g(X)6 y} = P
{

X 6 g−1(y)
}
= FX(g−1(y)).

Here, g−1(y) is the functional inverse, and not inverse image as we have been seeing typically. We can
think g−1(y) = g−1 {y}, though this inverse image has at most a single element since g is monotonically
increasing.

Example 1.4. Consider a positive random variable X : Ω→R+ defined on a probability space (Ω,F, P).
Let g : R+ → R+ be such that g(x) = e−θx for all x ∈ R+ and some θ > 0. Then, g is monotonically
decreasing in X and x = g−1(y) = − 1

θ lny. This implies that g−1(−∞,y] = [− 1
θ lny,∞) ∈ B(R+) for all

y ∈R+. Thus g is a measurable function, and Y = g(X) is a random variable.

Proposition 1.5 (Independence of function of random variables). Let g : R→R and h : R→R be functions
such that g−1(−∞, x] and h−1(−∞, x] are Borel sets for all x ∈R. Consider independent random variables X and Y
defined on the probability space (Ω,F, P), then g(X) and h(Y) are independent random variables.

Proof. For any u,v ∈R, we can define inverse images Ag(u), g−1(−∞,u] and Ah(v), h−1(∞,v]. Since g, h
are Borel measurable, we have Ag(u), Ah(v) ∈ B(R). We can write the following outcome set equality for
the joint event

{g(X)6 u} ∩ {h(Y)6 v} =
{

X ∈ g−1(−∞,u]
}
∩
{

Y ∈ h−1(−∞,v]
}
= X−1(Ag(u)) ∩Y−1(Ah(v)) ∈ F.

Since X and Y are independent random variables, it follows that X−1(Ag(u)) and Y−1(Ah(v)) are indepen-
dent events, and the result follows.
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2 Function of random vectors

Proposition 2.1. Consider a random vector X : Ω→ Rn defined on the probability space (Ω,F, P), and a Borel
measurable function g : Rn → Rm such that Ag(y) , ∩m

j=1
{

x ∈Rn : gj(x)6 yj
}
∈ B(Rn) for all y ∈ Rm. Then,

g(X) : Ω→Rm is a random vector. The joint distribution function FY : Rm→ [0,1] for the vector Y is given by

FY(y) = P(X−1(Ag(y))), for all y ∈Rm.

Example 2.2 (Sum of random variables). For a random vector X : Ω→ Rn defined on a probability
space (Ω,F, P). Define an addition function + : Rn → R such that +(x) = ∑n

i=1 xi for any x ∈ Rn. We
can verify that + is a Borel measurable function and hence Y = +(X) = ∑n

i=1 Xi is a random variable.
When n = 2 and X is a continuous random vector with density fX : R2→R+, we can write

FY(y) = P({Y 6 y}) = P({X1 + X2 6 y}) =
∫

x1∈R

∫
x26y−x1

fX(x1, x2)dx1dx2.

By applying a change of variable (x1, t) = (x1, x1 + x2) and changing the order of integration, we see
that

FY(y) =
∫

t6y
dt
∫

x1∈R
dx1 fX(x1, t− x1).

When Y is a continuous random vector, we can write

fY(y) =
dFY(y)

dy
=
∫

x∈R
fX(x,y− x)dx.

When X : Ω→ R2 is an independent vector, then fX(x) = fX1(x1) fX(x2) for all x ∈ R2. Therefore, the
density of the sum X1 + X2 is given by

fY(y) =
∫

x∈R
dx fX1(x) fX2(y− x) = ( fX1 ∗ fX2)(y),

where ∗ : RR ×RR→RR is the convolution operator.

Theorem 2.3. For a continuous random vector X : Ω→Rm defined on the probability space (Ω,F, P) with density
fX : Rm → R+ and an injective and smooth Borel measurable function g : Rm → Rm, such that Y = g(X) is a
continuous random vector. Then the density of random vector Y is given by

fY(y) =
fX(x)
|J(y)| ,

where x = g−1(y) and J(y) = (Jij(y),
∂yj
∂xi

: i, j ∈ [m]) is the Jacobian matrix.

Proof. For an injective map g : Rm → Rm we have {x} = g−1 {y} for any y ∈ g(Rm). Further, since g is
smooth, we have dy = J(y)dx + o(|dx|), and thus

|dy| = |J(y)| |dx|+ o(|dx|). (1)

Defining set dB(y) ,
{

w ∈Rm : yj 6 wj 6 yj + dyj
}

, we observe that for any continuous random vector
Y : Ω→Rm, we have

P ◦Y−1 (dB(y)) = fY(y) |dy| . (2)

We get the result by combining (1) and (2).
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Example 2.4 (Sum of random variables). Suppose that X : Ω→ R2 is a continuous random vector
and Y1 = X1 + X2. Let us compute fY1(y!) using the above theorem. Let us define a random vector
Y : Ω→ R2 such that Y = (X1 + X2, X2) so that |J(y)| = 1. This implies, fY(y) = fX(x). Thus, we may
compute the marginal density of Y1 as,

fY1(y1) =
∫ ∞

−∞
fX(x)1{x2=y2,x1+x2=y1}dy2 =

∫ ∞

−∞
fX(y1 − y2,y2)dy2.

If X is an independent random vector, then

fY1(y1) =
∫ ∞

−∞
fX1(y1 − y2) fX2(y2)dy2 = ( fX1 ∗ fX2)(y1),

where ∗ represents convolution.
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