
Lecture-07: Random Processes

1 Introduction

Remark 1. For an arbitrary index set T, and a real-valued function x ∈RT , the projection operator πt : RT→
R maps x ∈RT to πt(x) = xt.

Definition 1.1 (Random process). Let (Ω,F, P) be a probability space. For an arbitrary index set T and
state space X ⊆ R, a map X : Ω→ XT is called a random process if the projections Xt : Ω→ X defined by
ω 7→ Xt(ω), (πt ◦ X)(ω) are random variables on the given probability space.

Definition 1.2. For each outcome ω ∈ Ω, we have a function X(ω) : T 7→ X called the sample path or the
sample function of the process X.

Remark 2. A random process X defined on probability space (Ω,F, P) with index set T and state space
X⊆R, can be thought of as

(a) a map X : Ω× T→ X,

(b) a map X : T→ XΩ, i.e. a collection of random variables Xt : Ω→ X for each time t ∈ T,

(c) a map X : Ω→ XT , i.e. a collection of sample functions X(ω) : T→ X for each random outcome ω ∈Ω.

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process. If
the index set T ⊆R is countable, the stochastic process is called discrete-time stochastic process or random
sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The index
set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial process.
When T = Rn × [0,∞), stochastic process X is a spatio-temporal process.

Example 1.3. We list some examples of each such stochastic process.

i Discrete random sequence: brand switching, discrete time queues, number of people at bank each
day.

ii Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of nth
arrival, workload at arrivals in time sharing computer systems.

iii Discrete random process: counting processes, population sampled at birth-death instants, number
of people in queues.

iv Continuous random process: water level in a dam, waiting time till service in a queue, location of
a mobile node in a network.

1.2 Measurability

For random process X : Ω→ XT defined on the probability space (Ω,F, P), the projections Xt , πt ◦ X are
F-measurable random variables. Therefore, the set of outcomes AXt(x), X−1

t (−∞, x] ∈ F for all t ∈ T and
x ∈R.
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Definition 1.4. A random map X : Ω→ XT is called F-measurable and hence a random process, if the set
of outcomes AXt(x) = X−1

t (−∞, x] ∈ F for all t ∈ T and x ∈R.

Definition 1.5. The event space generated by a random process X : Ω→XT defined on a probability space
(Ω,F, P) is given by

σ(X), σ(AXt(x) : t ∈ T, x ∈R).

Definition 1.6. For a random process X : Ω→ XT defined on the probability space (Ω,F, P), we define the
projection of X onto components S ⊆ T as the random vector XS : Ω→ XS, where XS , (Xs : s ∈ S).

Remark 3. Recall that π−1
t (−∞, x] =×s∈T(−∞, xs] where xs = x for s = t and xs = ∞ for all s 6= t. The

F-measurability of process X implies that for any countable set S⊆ T, we have AXS(xS), ∩s∈S AXs(xs) ∈ F

for xS ∈ XS.

Remark 4. We can define AX(x) , ∩t∈T AXt(xt) for any x ∈ RT . However, AX(x) is guaranteed to be an
event only when S , {t ∈ T : πt(x) < ∞} is a countable set. In this case,

AX(x) = ∩t∈T AXt(xt) = ∩s∈S AXs(xs) = AXS(xS) ∈ F.

Example 1.7 (Bernoulli sequence). Consider a sample space {H, T}N. We define a mapping X :
Ω → {0,1}N such that Xn(ω) = 1{H}(ωn) = 1{ωn=H}. The map X is an F-measurable random se-
quence, if each Xn : Ω → {0,1} is a bi-variate F-measurable random variable on the probability
space (Ω,F, P). Therefore, the event space F must contain the event space generated by events
En , {ω ∈Ω : Xn(ω) = 1} = {ω ∈Ω : ωn = H} ∈ F. That is,

σ(X) = σ(En : n ∈N).

1.3 Distribution

Definition 1.8. For a random process X : Ω→ XT defined on the probability space (Ω,F, P), we define a
finite dimensional distribution FXS : RS→ [0,1] for a finite S ⊆ T by

FXS(xS), P(AXS(xS)), xS ∈RS.

Example 1.9. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N, the
event space F, σ(En : n ∈N) where En = {ω ∈Ω : ωn = H}, and the probability measure P : F→ [0,1]
defined by

P(∩i∈FEi) = p|F|, for all finite F ⊆N.

Let X : Ω→ {0,1}N defined as Xn(ω) = 1En(ω) for all outcomes ω ∈ Ω and n ∈N. For this random
sequence, we can obtain the finite dimensional distribution FXS : RS → [0,1] for any finite S ⊆ T and
x ∈RS in terms of U , {i ∈ S : xi < 0} and V , {i ∈ S : xi ∈ [0,1)}, as

FXS(x) =


1, U ∪V = ∅,
(1− p)|V|, U = ∅,V 6= ∅,
0, U 6= ∅.

(1)

To define a measure on a random process, we can either put a measure on subsets of sample paths
(X(ω) ∈ RT : ω ∈ Ω), or equip the collection of random variables (Xt ∈ RΩ : t ∈ T) with a joint measure.
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Either way, we are interested in identifying the joint distribution F : RT→ [0,1]. To this end, for any x ∈RT ,
we need to know

FX(x), P

(⋂
t∈T
{ω ∈Ω : Xt(ω)6 xt}

)
= P(

⋂
t∈T

X−1
t (−∞, xt]) = P(AX(x)).

First of all, we don’t know whether AX(x) is an event when T is uncountable. Though, we can verify
that AX(x) ∈ F for x ∈ RT such that {t ∈ T : xt < ∞} is countable. Second, even for a simple independent
process with countably infinite T, any function of the above form would be zero if xt is finite for all t ∈ T.
Therefore, we only look at the values of FX(x) for x ∈ RT where {t ∈ T : xt < ∞} is finite. That is, for any
finite set S⊆ T, we focus on the events AS(xS) and their probabilities. However, these are precisely the finite
dimensional distributions. Set of all finite dimensional distributions of the stochastic process X : Ω→ XT

characterizes its distribution completely.

Example 1.10. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N and
the event space F , σ(En : n ∈ N) where En = {ω ∈Ω : ωn = H}. Let X : Ω → {0,1}N defined as
Xn(ω) = 1En(ω) for all outcomes ω ∈Ω and n ∈N. For this random sequence, if we are given the finite
dimensional distribution FXS : RS→ [0,1] for any finite S⊆ T and x ∈RS in terms of U , {i ∈ S : xi < 0}
and V , {i ∈ S : xi ∈ [0,1)}, as defined in Eq. (1). Then, we can find the probability measure P :F→ [0,1]
is given by

P(∩i∈FEi) = p|F|, for all finite F ⊆N.

1.4 Independence

Definition 1.11. A random process is independent if the collection of event spaces (σ(Xt) : t ∈ T) is inde-
pendent. That is, for all xS ∈RS, we have

FXS(xS) = P(∩s∈S {Xs 6 xs}) = ∏
s∈S

P{Xs 6 xs} = ∏
s∈S

FXs(xs).

That is, independence of a random process is equivalent to factorization of any finite dimensional distribu-
tion function into product of individual marginal distribution functions.

Example 1.12. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N, the
event space F, σ(En : n ∈N) where En = {ω ∈Ω : ωn = H}, and the probability measure P : F→ [0,1]
defined by

P(∩i∈FEi) = p|F|, for all finite F ⊆N.

Then, we observe that the random sequence X : Ω→ {0,1}N defined by Xn(ω) , 1En(ω) for all out-
comes ω ∈Ω and n ∈N, is independent.

Definition 1.13. Two stochastic processes X : Ω→ XT1 ,Y : Ω→ YT2 are independent, if the corresponding
event spaces σ(X),σ(Y) are independent. That is, for any x ∈ RS1 ,y ∈ RS2 for finite S1 ⊆ T1,S2 ⊆ T2, the
events AS1(x), ∩s∈S1 X−1

s (−∞, xs] and BS2(y), ∩s∈S2Y−1
s (−∞,ys] are independent. That is, the joint finite

dimensional distribution of X and Y factorizes, and

P(AS1(x) ∩ BS2(y)) = P(AS1(x))P(BS2(y)) = FXS1
(x)FYS2

(y), x ∈RS1 ,y ∈RS2 .
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