
Lecture-08: Expectation

1 Expectation

Example 1.1. Consider a probability space (Ω,F, P). We consider N trials of a random experiment, and
define a random vector X : Ω → XN such that Xi(ω) is a discrete random variable associated with the
trial i ∈ [N]. If the marginal distributions of random variables (Xi : Ω → X : i ∈ [N]) are identical with
the common probability mass function PX1 : X→ [0,1], then the empirical mean of random variable X1
can be written as

m̂ =
1
N

N

∑
i=1

Xi(ω).

For a random variable X1 : Ω → X, we can define events CX1(x) ≜ X−1
1 {x} for each value x ∈ X. The

probability mass function PX1 : X→ [0,1] for a discrete random variable can be estimated for each x ∈X

as the empirical probability mass function

P̂X1(x) =
1
N

N

∑
i=1

1CXi
(x)(ω).

Recall that a simple random variable X1 can be written as X1 = ∑x∈X x1CX1 (x), where CX1 ≜

(CX1(x) ∈ F : x ∈ X) is a finite partition of the sample space Ω and PX1(x) = P(CX1(x)). That is, we
can write the empirical mean in terms of the empirical PMF as

m̂ =
1
N

N

∑
i=1

∑
x∈X

x1CXi
(x)(ω) = ∑

x∈X
xP̂X1(x).

This example motivates the following definition of mean for simple random variables.

Definition 1.2 (Expectation of simple random variable). The mean or expectation of a simple random
variable X : Ω → X⊆ R defined on a probability space (Ω,F, P), is denoted by E[X] and defined as

E[X]≜ ∑
x∈X

xPX(x).

Remark 1. Since a simple random variable can be written as X = ∑x∈X x1{X=x} for CX(x) = X−1 {x}, we
can write the expectation of a simple random variable as an integral

E[X] =
∫

Ω
X(ω)P(dω) =

∫
Ω

∑
x∈X

x1CX(x)(ω)P(dω) = ∑
x∈X

x
∫

Ω
1CX(x)(ω)P(dω) = ∑

x∈X
xE[1CX(x)] = ∑

x∈X
xPX(x).

That is, the expectation of an indicator function is the probability of the indicated set.

Theorem 1.3. Consider a non-negative random variable X : Ω → R+ defined on a probability space (Ω,F, P). There
exists a sequence of non-decreasing non-negative simple random variables Y : Ω → RN

+ such that for all ω ∈ Ω

Yn(ω)⩽ Yn+1(ω), for all n ∈ N, and lim
n

Yn(ω) = X(ω).
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Then E[Yn] is defined for each n∈N, the sequence (E[Yn]∈R+ : n∈N) is non-decreasing, and the limit limn E[Yn]∈
R+ ∪ {∞} exists. This limit is independent of the choice of the sequence and depends only on the probability space.

Proof. For each n ∈ N and k ∈
{

0, . . . ,22n − 1
}

, we define half-open sets Bn,k ≜ (k2−n, (k + 1)2−n]. Then,
the collection of sets Bn ≜ (Bn,k : k ∈

{
0, . . . ,22n − 1

}
) partitions the set (0,2n] for each n ∈ N. Further, we

observe that ∪n∈N(0,2n] = R+ and that Bn+1,2k ∪ Bn+1,2k+1 = Bn,k for all n ∈ N and k.
For a non-negative random variable X : Ω → R+, we define events AX

n,k = X−1(Bn,k)∈ F, and a sequence
of simple non-negative random variables Y : Ω → RN

+ in the following fashion

Yn(ω)≜
22n−1

∑
k=0

1AX
n,k
(ω)

(
inf

ω∈AX
n,k

X(ω)

)
=

22n−1

∑
k=0

1AX
n,k
(ω)

(
inf

X(ω)∈Bn,k

X(ω)

)
=

22n−1

∑
k=0

k2−n
1AX

n,k
(ω).

We observe that Yn is a quantized version of X, and its value is the left end-point k2−n when X ∈ Bn,k for
each k ∈

{
0, . . . ,22n − 1

}
. Since ∪22n−1

k=0 AX
n,k = X−1(0,2n], it follows that we cover the positive real line as

n grows larger and the step size grows smaller. Thus, the limiting random variable can take all possible
non-negative real values. We observe that

Yn+1(ω) =
22(n+1)−1

∑
k=0

1AX
n+1,k

(ω)

(
inf

X(ω)∈Bn+1,k

X(ω)

)

=
22n−1

∑
k=0

(
1AX

n+1,2k
(ω)

(
inf

X(ω)∈Bn+1,2k

X(ω)

)
+ 1AX

n+1,2k+1
(ω)

(
inf

X(ω)∈Bn+1,2k+1

X(ω)

))

⩾
22n−1

∑
k=0

1AX
n,2k

(ω)

(
inf

X(ω)∈Bn,k

X(ω)

)
= Yn(ω).

We see that Yn(ω)⩽ Yn+1(ω)⩽ X(ω) and limn Yn(ω) = X(ω) for all ω ∈ Ω.
Since Yn : Ω → R is a simple random variable for all n ∈ N, the expectation E[Yn] is defined for all n,

and can be written as

E[Yn] =
22n−1

∑
k=0

k2−n[FX((k + 1)2−n)− FX(k2−n)].

We observe that this expectation is completely specified by the distribution function FX , and we can write
the limit

lim
n

E[Yn] = lim
n

22n−1

∑
k=0

k2−n[FX(k2−n + 2−n)− FX(k2−n))] =
∫

R+
xdFX(x).

Definition 1.4 (Expectation of a non-negative random variable). For a non-negative random variable X :
Ω → R defined on the probability space (Ω,F, P), consider the sequence of non-decreasing simple random
variables Y : Ω → RN

+ such that limn Yn = X. The expectation of the non-negative random variable X is
defined as

E[X]≜ lim
n

E[Yn].

Remark 2. From the definition, it follows that E[X] =
∫

R+
xdFX(x).

Definition 1.5 (Expectation of a real random variable). For a real-valued random variable X defined on a
probability space (Ω,F, P), we can define the following functions

X+ ≜ max{X,0} , X− ≜ max{0,−X} .

We can verify that X+, X− are non-negative random variables and hence their expectations are well defined.
We observe that X(ω) = X+(ω)− X−(ω) for each ω ∈ Ω. If at least one of the E[X+] and E[X−] is finite,
then the expectation of the random variable X is defined as

E[X]≜ E[X+]− E[X−].
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Theorem 1.6 (Expectation as an integral with respect to the distribution function). For a random variable
X : Ω → R defined on the probability space (Ω,F, P), the expectation is given by

E[X] =
∫

R
xdFX(x).

Proof. It suffices to show this for a non-negative random variable X, and the result follows from the defini-
tion of expectation of a non-negative random variable as the limit of expectation of approximating simple
functions.

2 Properties of Expectations

Theorem 2.1 (Properties). Let X : Ω → R be a random variable defined on the probability space (Ω,F, P).

(i) Linearity: Let a,b ∈ R and X,Y be random variables defined on the probability space (Ω,F, P). If EX,EY,
and aEX + bEY are well defined, then E(aX + bY) is well defined and

E(aX + bY) = aEX + bEY.

(ii) Monotonicity: If P{X ⩾ Y} = 1 and E[Y] is well defined with E[Y] > −∞, then E[X] is well defined and
E[X]⩾ E[Y].

(iii) Functions of random variables: Let g : R → R be a Borel measurable function, then g(X) is a random
variable with E[g(X)] =

∫
x∈R

g(x)dF(x).

(iv) Continuous random variables: Let fX : R → [0,∞) be the density function, then EX =
∫

x∈R
x fX(x)dx.

(v) Discrete random variables: Let PX : X→ [0,1] be the probability mass function, then EX = ∑x∈X xPX(x).

(vi) Integration by parts: The expectation EX =
∫

x⩾0(1 − FX(x))dx +
∫

x<0 FX(x)dx is well defined when at
least one of the two parts is finite on the right hand side.

Proof. It suffices to show properties (i)− (iii) for simple random variables.

(i) Let X = ∑x∈X x1CX(x) and Y = ∑y∈Y y1CY(y) be simple random variables, then (CX(x) ∩ CY(y) ∈
F : (x,y) ∈ X × Y) partition the sample space Ω. Hence, we can write aX + bY = ∑(x,y)∈X×Y(ax +

by)1{CX(x)∩CY(y)} and from linearity of sum it follows that

E[aX + bY] = ∑
(x,y)∈X×Y

(ax + by)P{CX(x) ∩ CY(y)}

= a ∑
x∈X

x ∑
y∈Y

P{CX(x) ∩ CY(y)}+ b ∑
y∈Y

y ∑
x∈X

P{CX(x) ∩ CY(y)}

= a ∑
x∈X

xP(CX(x)) + b ∑
y∈Y

yP(CY(y)) = aEX + bEY.

(ii) From the fact that X −Y ⩾ 0 almost surely and linearity of expectation, it suffices to show that EX ⩾ 0
for non-negative random variable X. It can easily be shown for simple non-negative random variables,
and follows for general non-negative random variables by taking limits.

(iii) It suffices to show this holds true for simple random variables X : Ω →X⊂ R. Since g : R → R is Borel
measurable, Y = g(X) is a random variable. For each y ∈ Y= g(X), we have

CY(y) = {ω ∈ Ω : (g ◦ X)(ω) = y} = X−1 ◦ g−1 {y} = ∪x∈g−1{y}CX(x).

Therefore, we can write the expectation

E[Y] = ∑
y∈Y

yP(CY(y)) = ∑
y∈Y

∑
x∈g−1(y)

g(x)P(CX(x)) = ∑
x∈X

g(x)P(CX(x)).
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(iv) For continuous random variables, we have dFX(x) = fX(x)dx for all x ∈ R.

(v) For discrete random variables X : Ω → X, we have dFX(x) = PX(x) for all x ∈ X and zero otherwise.

(vi) We can write EX = −
∫

x⩾0 xd(1 − FX)(x) +
∫

x<0 xdFX(x). Therefore, we have

= −x(1 − FX(x))|∞0 +
∫

x⩾0
(1 − FX(x))dx.
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