Lecture-10: Correlation

1 Correlation

Let $X: \Omega \rightarrow \mathbb{R}$ and $Y: \Omega \rightarrow \mathbb{R}$ be random variables defined on the same probability space (Ω, \mathcal{F}, P).

Exercise 1.1. Show that the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $g:(x, y) \mapsto x y$ is a Borel measurable function.

Definition 1.2 (Correlation). For two random variables X, Y defined on the same probability space, the correlation between these two random variables is defined as $\mathbb{E}[X Y]$. If $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$, then the random variables X, Y are called uncorrelated.

Lemma 1.3. If X, Y are independent random variables, then they are uncorrelated.
Proof. It suffices to show for X, Y simple and independent random variables. We can write $X=\sum_{x \in X} x \mathbb{1}_{A_{X}(x)}$ and $Y=\sum_{y \in y} y \mathbb{1}_{A_{Y}(y)}$. Therefore,

$$
\mathbb{E}[X Y]=\sum_{(x, y) \in X \times y} x y P\left\{A_{X}(x) \cap A_{Y}(y)\right\}=\sum_{x \in X} x P\left(A_{X}(x)\right) \sum_{y \in \mathcal{y}} y P\left(A_{Y}(y)\right)=\mathbb{E}[X] \mathbb{E}[Y]
$$

Proof. If X, Y are independent random variables, then the joint distribution $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all $(x, y) \in \mathbb{R}^{2}$. Therefore,

$$
\mathbb{E}[X Y]=\int_{(x, y) \in \mathbb{R}^{2}} x y d F_{X, Y}(x, y)=\int_{x \in \mathbb{R}} x d F_{X}(x) \int_{y \in \mathbb{R}} y d F_{Y}(y)=\mathbb{E}[X] \mathbb{E}[Y] .
$$

Example 1.4 (Uncorrelated dependent random variables). Let $X: \Omega \rightarrow \mathbb{R}$ be a continuous random variable with even density function $f_{X}: \mathbb{R} \rightarrow \mathbb{R}_{+}$, and $g: \mathbb{R} \rightarrow \mathbb{R}_{+}$be another even function that is increasing for $y \in \mathbb{R}_{+}$. Then g is Borel measurable function and $Y=g(X)$ is a random variable. Further, we can verify that X, Y are uncorrelated and dependent random variables.

To show dependence of X and Y, we take positive x, y such that $F_{X}(x)<1$ and $x>x_{y}$ where $\left\{x_{y}\right\}=$ $g^{-1}(y) \cap \mathbb{R}_{+}$. Then, we can write the set

$$
A_{Y}(y)=Y^{-1}(-\infty, y]=X^{-1}\left[-x_{y}, x_{y}\right] .
$$

Hence, we can write the joint distribution at (x, y) as

$$
F_{X, Y}(x, y)=P\{X \leqslant x, Y \leqslant y\}=P\left(A_{X}(x) \cap A_{Y}(y)\right)=P\left(A_{Y}(y)\right)=F_{Y}(y) \neq F_{X}(x) F_{Y}(y)
$$

Since X has even density function, we have $f_{X}(x)=f_{X}(-x)$ for all $x \in \mathbb{R}$. Therefore, we have

$$
\mathbb{E} X g(X) \mathbb{1}_{\{X<0\}}=\int_{x<0} x g(x) f_{X}(x) d x=\int_{u>0}(-u) g(-u) f_{X}(u) d u=-\mathbb{E} X g(-X) \mathbb{1}_{\{X>0\}}
$$

Further, since the function g is even, we have $g(X)=g(-X)$. Therefore, we have

$$
\mathbb{E}[X g(X)]=\mathbb{E}\left[X g(X) \mathbb{1}_{\{X>0\}}\right]-\mathbb{E}\left[X g(-X) \mathbb{1}_{\{X>0\}}\right]=\mathbb{E}\left[X g(X) \mathbb{1}_{\{X>0\}}\right]-\mathbb{E}\left[X g(X) \mathbb{1}_{\{X>0\}}\right]=0
$$

Theorem 1.5 (AM greater than GM). For any two random variables X, Y, the correlation is upper bounded by the average of the second moments, with equality iff $X=Y$ almost surely. That is,

$$
\mathbb{E}[X Y] \leqslant \frac{1}{2}\left(\mathbb{E} X^{2}+\mathbb{E} Y^{2}\right)
$$

Proof. This follows from the linearity and monotonicity of expectations and the fact that $(X-Y)^{2} \geqslant 0$ with equality iff $X=Y$.

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X, Y, the correlation of absolute values of X and Y is upper bounded by the square root of product of second moments, with equality iff $X=\alpha Y$ for any constant $\alpha \in \mathbb{R}$. That is,

$$
\mathbb{E}|X Y| \leqslant \sqrt{\mathbb{E} X^{2} \mathbb{E} Y^{2}}
$$

Proof. For two random variables X and Y, we can define normalized random variables $W \triangleq \frac{|X|}{\sqrt{\mathbb{E} X^{2}}}$ and $Z \triangleq \frac{|Y|}{\sqrt{\mathbb{E} Y^{2}}}$, to get the result.

2 Covariance

Definition 2.1 (Covariance). For two random variables X, Y defined on the same probability space, the covariance between these two random variables is defined as $\operatorname{cov}(X, Y) \triangleq \mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)$.
Lemma 2.2. If the random variables X, Y are called uncorrelated, then the covariance is zero.
Proof. We can write the covariance of uncorrelated random variables X, Y as

$$
\operatorname{cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)=\mathbb{E} X Y-(\mathbb{E} X)(\mathbb{E} Y)=0
$$

Lemma 2.3. Let $X: \Omega \rightarrow \mathbb{R}^{n}$ be an uncorrelated random vector and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
$$

Proof. From the linearity of expectation, we can write the variance of the linear combination as

$$
\mathbb{E}\left(\sum_{i=1}^{n} a_{i}\left(X_{i}-\mathbb{E} X_{i}\right)\right)^{2}=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var} X_{i}+\sum_{i \neq j} \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

Definition 2.4 (Correlation coefficient). The ratio of covariance of two random variables X, Y and the square root of product of their variances is called the correlation coefficient and denoted by

$$
\rho_{X, Y} \triangleq \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{Var}(X), \operatorname{Var}(Y)}}
$$

Theorem 2.5 (Correlation coefficient). For any two random variables X, Y, the absolute value of correlation coefficient is less than or equal to unity, with equality iff $X=\alpha Y+\beta$ almost surely for constants $\alpha=\sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}(Y)}}$ and $\beta=\mathbb{E} X-\alpha \mathbb{E} Y$.
Proof. For two random variables X and Y, we can define normalized random variables $W \triangleq \frac{X-\mathbb{E} X}{\sqrt{\operatorname{Var}(X)}}$ and $Z \triangleq \frac{Y-\mathbb{E} Y}{\sqrt{\operatorname{Var}(Y)}}$. Applying the AM-GM inequality to random variables W, Z, we get

$$
|\operatorname{cov}(X, Y)| \leqslant \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
$$

Recall that equality is achieved iff $W=Z$ almost surely or equivalently iff $X=\alpha Y+\beta$ almost surely. Taking $U=-Y$, we see that $-\operatorname{cov}(X, Y) \leqslant \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$, and hence the result follows.

$3 \quad L^{p}$ spaces

Definition 3.1. For $p, q \geqslant 1$ with $\frac{1}{p}+\frac{1}{q}=1,(p, q)$ is called the conjugate pair, and the spaces L^{p} and L^{q} are called dual spaces.

Example 3.2. The dual of L^{1} space is L^{∞}. The space L^{2} is dual of itself, and called a Hilbert space.

Theorem 3.3 (Hölder's inequality). Consider two random variables X, Y such that $\mathbb{E}|X|^{p}$ and $\mathbb{E}|Y|^{q}$ are finite for $p, q \geqslant 1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then,

$$
\mathbb{E}|X Y| \leqslant\|X\|_{p}\|Y\|_{q}
$$

Proof. Recall that $f(x)=e^{x}$ is a convex function. Therefore, for random variable $Z \in\{p \ln V, q \ln W\}$ with PMF $\left(\frac{1}{p}, \frac{1}{q}\right)$, it follows from Jensen's inequality that

$$
V W=f(\mathbb{E} Z) \leqslant \mathbb{E} f(Z)=\frac{V^{p}}{p}+\frac{W^{q}}{q}
$$

Taking expectation on both sides, we get from the monotonicity of expectation that $\mathbb{E} V W \leqslant \frac{\mathbb{E} V^{p}}{p}+\frac{\mathbb{E} W^{q}}{q}$. Taking $V \triangleq \frac{|X|}{\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}}}$ and $W \triangleq \frac{|Y|}{\left(\mathbb{E}|Y|^{q}\right)^{\frac{1}{q}}}$, we get the result.

Definition 3.4. For a pair of random variables $(X, Y) \in\left(L^{p}, L^{q}\right)$ for conjugate pair (p, q), we can define inner product $\left\rangle: L^{p} \times L^{q} \rightarrow \mathbb{R}\right.$ by

$$
\rangle(X, Y) \triangleq\langle X, Y\rangle \triangleq \mathbb{E} X Y
$$

Remark 1. For $X \in L^{p}$ and $Y \in L^{q}$, the expectation $\mathbb{E}|X Y|$ is finite from Hölder's inequality. Therefore, the inner product $\langle X, Y\rangle=\mathbb{E}[X Y]]$ is well defined and finite.
Remark 2. This inner product is well defined for the conjugate pair $(1, \infty)$.
Theorem 3.5 (Minkowski's inequality). For $1 \leqslant p<\infty$, let $X, Y \in L^{p}$ be two random variables defined on a probability space (Ω, \mathcal{F}, P). Then,

$$
\|X+Y\|_{p} \leqslant\|X\|_{p}+\|Y\|_{p}
$$

with inequality iff $X=\alpha Y$ for some $\alpha \geqslant 0$ or $Y=0$.
Proof. Since addition is a Borel measurable function, $X+Y$ is a random variable. We first show that $X+Y \in$ L^{p}, when $X, Y \in L^{p}$. To this end, we observe that $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$defined by $g(x)=x^{p}$ for all $x \in \mathbb{R}_{+}$, is a convex function for $p \geqslant 1$. From the convexity of g, we have

$$
\left|\frac{1}{2} X+\frac{1}{2} Y\right|^{p} \leqslant\left|\frac{1}{2}\right| X\left|+\frac{1}{2}\right| Y| |^{p}=g\left(\frac{1}{2}|X|+\frac{1}{2}|Y|\right) \leqslant \frac{1}{2} g(|X|)+\frac{1}{2} g(|Y|)=\frac{1}{2}|X|^{p}+\frac{1}{2}|Y|^{p} .
$$

This implies that $|X+Y|^{p} \leqslant 2^{p-1}\left(|X|^{p}+|Y|^{p}\right)$.
The inequality holds trivially if $\|X+Y\|_{p}=0$. Therefore, we assume that $\|X+Y\|_{p}>0$, without any loss of generality. Using the definition of $\left\|\|_{p}\right.$, triangle inequality, and linearity of expectation we get

$$
\|X+Y\|_{p}^{p}=\mathbb{E}\left[|X+Y||X+Y|^{p-1}\right] \leqslant E\left([|X|+|Y|)|X+Y|^{p-1}\right]=\mathbb{E}|X||X+Y|^{p-1}+\mathbb{E}|Y||X+Y|^{p-1}
$$

From the Hölder's inequality applied to conjugate pair (p, q) to the two products on RHS, we get

$$
\|X+Y\|_{p}^{p} \leqslant\left(\|X\|_{p}+\|Y\|_{p}\right)\left\||X+Y|^{p-1}\right\|_{q}
$$

Recall that $q=\frac{p}{p-1}$, and hence $(p-1) q=p$. Therefore, $\left\||X+Y|^{p}\right\|_{q}=\left(\mathbb{E}|X+Y|^{p}\right)^{1-\frac{1}{p}}$ and the result follows.

Remark 3. We have shown that the map $\left\|\|_{p}\right.$ is a norm by proving the Minkowski's inequality. Therefore, L^{p} is a normed vector space. We can define distance between two random variables $X_{1}, X_{2} \in L^{p}$ by the norm $\left\|X_{1}-X_{2}\right\|_{p}$.

