
Lecture-11: Generating functions

1 Generating functions

Suppose that X : Ω →R is a continuous random variable on the probability space (Ω,F, P) with distribution
function FX : R → [0,1].

1.1 Characteristic function

Example 1.1. Let j ≜
√
−1, then we can show that hu : R → C defined by hu(x) ≜ ejux = cos(ux) +

jsin(ux) is also Borel measurable for all u ∈ R. Thus, hu(X) : Ω → C is a complex valued random
variable on this probability space.

Definition 1.2 (Characteristic function). For a random variable X : Ω → R defined on the probability space
(Ω,F, P), the characteristic function ΦX : R → C is defined by ΦX(u)≜ EejuX for all u ∈ R and j2 = −1.

Remark 1. The characteristic function ΦX(u) is always finite, since |ΦX(u)| =
∣∣EejuX

∣∣⩽ E
∣∣ejuX

∣∣ = 1.
Remark 2. For a discrete random variable X : Ω → X with PMF PX : X → [0,1], the characteristic function
ΦX(u) = ∑x∈X ejuxPX(x).
Remark 3. For a continuous random variable X : Ω→R with density function fX : R→R+, the characteristic
function ΦX(u) =

∫ ∞
−∞ ejuX fX(x)dx.

Example 1.3 (Gaussian random variable). For a Gaussian random variable X : Ω → R with mean µ
and variance σ2, the characteristic function ΦX is

ΦX(u) =
1√

2πσ2

∫
x∈R

ejuxe−
(x−µ)2

2σ2 dx = exp
(
− u2σ2

2
+ juµ

)
.

We observe that |ΦX(u)| = e−u2σ2/2 has Gaussian decay with zero mean and variance 1/σ2.

Theorem 1.4. If E |X|N is finite for some integer N ∈ N, then Φ(k)
X (u) is finite and continuous functions of u ∈ R

for all k ∈ [N]. Further, Φ(k)
X (0) = jkE[Xk] for all k ∈ [N].

Proof. Exchanging derivative and the integration (which can be done since ejux is a bounded function with
all derivatives), and evaluating the derivative at u = 0, we get

Φ(k)
X (0) = E

[
dkejuX

duk

∣∣∣
u=0

]
= jkE[Xk].

Since E |X|N is finite, then so is E |X|k for all k ∈ [N]. Therefore, E[Xk] exists and is finite, and Φ(k)
X (0) =

jkE[Xk].

Theorem 1.5. Two random variables have the same distribution iff they have the same characteristic function.

Proof. It is easy to see the necessity and the sufficiency is difficult.
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1.2 Moment generating function

Example 1.6. A function gt : R → R+ defined by gt(x) ≜ etx is monotone and hence Borel measurable
for all t ∈ R. Therefore, gt(X) : Ω → R is a positive random variable on this probability space.

Characteristic function always exist, however are complex in general. Sometimes it is easier to work with
moment generating functions, when they exist.

Definition 1.7 (Moment generating function). For a random variable X : Ω → R defined on the probability
space (Ω,F, P), the moment generating function MX : R → R+ is defined by MX(t) ≜ EetX for all t ∈ R

where MX(t) is finite.

Lemma 1.8. For a random variable X, if the MGF MX(t) is finite for some t ∈R, then MX(t) = 1+∑n∈N
tn

n! E[Xn].

Proof. From the Taylor series expansion of eθ around θ = 0, we get eθ = 1 + ∑n∈N
θn

n! . Therefore, taking
θ = tX, we can write

etX = 1 + ∑
n∈N

tn

n!
Xn.

Taking expectation on both sides, the result follows from the linearity of expectation, when both sides have
finite expectation.

Example 1.9 (Gaussian random variable). For a Gaussian random variable X : Ω → R with mean µ
and variance σ2, the moment generating function MX is

MX(t) = exp
( t2σ2

2
+ tµ

)
.

1.3 Probability generating function

For a non-negative integer-valued random variable X : Ω → X ⊆ Z+, it is often more convenient to work
with the z-transform of the PMF, called the probability generating function.

Definition 1.10. For a discrete non-negative integer-valued random variable X : Ω → X⊆ Z+ with proba-
bility mass function PX : X→ [0,1], the probability generating function ΨX : C → C is defined by

ΨX(z)≜ E[zX ] = ∑
x∈X

zxPX(x), z ∈ C, |z|⩽ 1.

Lemma 1.11. For a non-negative simple random variable X : Ω → X, we have |ΨX(z)|⩽ 1 for all |z|⩽ 1.

Proof. Let z ∈ C with |z|⩽ 1. Let PX : X→ [0,1] be the probability mass function of the non-negative simple
random variable X. Since any realization x ∈ X of random variable X is non-negative, we can write

|ΨX(z)| =
∣∣∣∣∣ ∑x∈XzxPX(x)

∣∣∣∣∣⩽ ∑
x∈X

|z|x PX(x)⩽ ∑
x∈X

PX(x) = 1.

Theorem 1.12. For a non-negative simple random variable X : Ω → X with finite kth moment EXk, the k-th deriva-
tive of probability generating function evaluated at z = 1 is the k-th order factorial moment of X. That is,

Ψ(k)
X (1) = E

[
k−1

∏
i=0

(X − i)

]
= E[X(X − 1)(X − 2) . . . (X − k + 1)].
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Proof. It follows from the interchange of derivative and expectation.
Remark 4. Moments can be recovered from kth order factorial moments. For example,

E[X] = Ψ
′
X(1), E[X2] = Ψ(2)

X (1) + Ψ
′
X(1).

Theorem 1.13. Two non-negative integer-valued random variables have the same probability distribution iff their
z-transforms are equal.

Proof. The necessity is clear. For sufficiency, we see that Ψ(k)
X (0) = k!pX(k). Further, interchanging the

derivative and the summation (by dominated convergence theorem), we get the second result.

2 Gaussian Random Vectors

Definition 2.1. For a random vector X : Ω → Rn defined on a probability space (Ω,F, P), we can define the
characteristic function ΦX : Rn → C by ΦX(u)≜ Eej⟨u,X⟩ where u ∈ Rn.

Remark 5. If X : Ω → Rn is an independent random vector, then ΦX(u) = ∏n
i=1 ΦXi (ui) for all u ∈ Rn.

Definition 2.2 (I.i.d. Gaussian random vector). For a probability space (Ω,F, P), an i.i.d. Gaussian random
vector X : Ω → Rn is a continuous random vector defined by its density function

fX(x) =
1

(2πσ2)n/2 exp

(
−1

2

n

∑
i=1

(xi − µ1)
2

σ2

)
for all x ∈ Rn.

for some real scalar µ1 and positive σ2 ∈ R+.

Remark 6. For an i.i.d. Gaussian random vector with density parametrized by (µ1,σ2), the components are
i.i.d. Gaussian random variables with mean µ1 and variance σ2.
Remark 7. The characteristic function ΦX of an i.i.d. Gaussian random vector X : Ω → Rn parametrized by
(µ1,σ2) is given by

ΦX(u) =
n

∏
i=1

ΦXi (ui) = exp
(
− σ2

2

n

∑
i=1

u2
i + jµ1

n

∑
i=1

ui

)
.

Lemma 2.3. For an i.i.d. zero mean unit variance Gaussian vector Z : Ω → Rn, vector α ∈ Rn, and scalar µ ∈ R,
the affine combination Y ≜ µ + ⟨α, Z⟩ is a Gaussian random variable.

Proof. From the linearity of expectation and the fact that Z is a zero mean vector, we get EY = µ. Further,
from the linearity of expectation and the fact that E[ZZT ] = I, we get

σ2 ≜ Var(Y) = E(Y − µ)2 =
n

∑
i=1

n

∑
k=1

αiαkE[ZiZk] = ⟨α,α⟩ = ∥α∥2
2 =

n

∑
i=1

α2
i .

To show that Y is Gaussian, it suffices to show that ΦY(u) = exp(− u2σ2

2 + juµ) for any u ∈ R. Recall that
Z is an independent random vector with individual components being identically zero mean unit variance
Gaussian. Therefore, ΦZi (u) = exp(− u2

2 ), and we can compute the characteristic function of Y as

ΦY(u) = EejuY = ejuµE
n

∏
i=1

ejuαiZi = ejuµ
n

∏
i=1

ΦZi (uαi) = exp(−u2σ2

2
+ juµ).

Definition 2.4 (Gaussian random vector). For a probability space (Ω,F, P), a Gaussian random vector
X : Ω → Rn can be written as

X = µ + AZ,

from some vector µ ∈ Rn, matrix A ∈ Rn×n, and i.i.d. Gaussian random vector Z : Ω → Rn with mean 0 and
variance 1. We denote the covariance matrix for the Gaussian vector X by Σ ≜ E(X − µ)(X − µ)T .
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Remark 8. The components of the Gaussian random vector are Gaussian random variables with mean µi
and variance ∑n

k=1 A2
i,k = (AAT)i,i, since each component Xi = µi + ∑n

k=1 Ai,kZk is an affine combination of
zero mean unit variance i.i.d. random variables.

Lemma 2.5. For a Gaussian random vector X = µ + AZ for µ ∈ Rn, A ∈ Rn×n, and i.i.d. zero mean unit variance
Gaussian random vector Z, the covariance matrix is Σ = AAT .

Proof. We can write Xi = µi + ∑n
k=1 Ai,kZk and we get EXi = µi from linearity of expectations and the fact

that EZk = 0 for all k ∈ [n]. Similarly, the (i, j)th component of covariance matrix is the mean of

(Xi − µi)(Xj − µj) =
n

∑
ℓ=1

n

∑
k=1

Ai,k Aj,ℓZkZℓ =
n

∑
k=1

Ai,k Aj,kZ2
k +

n

∑
k ̸=ℓ

Ai,k Aj,ℓZkZℓ.

From the linearity of expectation, and the fact that Z is an independent zero mean unit variance random
vector, we get Σi,j = (AAT)i,j.

Proposition 2.6. The density for a Gaussian random vector X : Ω →Rn with mean µ ∈Rn and invertible covariance
matrix Σ ∈ Rn×n, is given by

fX(x) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
for all x ∈ Rn.

Proof. We can write X = µ + Σ
1
2 Z, where Z : Ω → Rn is an i.i.d. zero mean unit variance Gaussian random

vector. Then, we observe that Z = Σ− 1
2 (X − µ). This implies that the Jacobian matrix J(z) = Σ− 1

2 , since

the (i, j)th component of the Jacobian matrix J(z) is given by Ji,j(z) =
∂zj
∂xi

= Σ− 1
2

j,i , i, j ∈ [n]. Recall that the

density of Z is fZ(z) = 1√
(2π)n

exp(− 1
2 zTz), and from the transformation of random vectors, we get

fX(x) = fZ(Σ− 1
2 (x − µ))det(Σ− 1

2 ) =
1

(2π)n/2 det(Σ)1/2 exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)
, x ∈ Rn.

Remark 9. For any u ∈ Rn, we compute the characteristic function ΦX from the distribution of Z as

ΦX(u) = Eej⟨u,X⟩ = Eexp
(

j ⟨u,µ⟩+ j
〈

ATu, Z
〉)

= exp(j ⟨u,µ⟩)ΦZ(ATu) = exp(j ⟨u,µ⟩ − 1
2

uTΣu).

Lemma 2.7. If the components of the Gaussian random vector are uncorrelated, then they are independent.

Proof. If a Gaussian vector is uncorrelated, then the covariance matrix Σ is diagonal. It follows that we can
write fX(x) = ∏n

i=1 fXi (xi) for all x ∈ Rn.
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