Lecture-13: L? convergence

1 LP convergence

Definition 1.1 (Convergence in L7). Let p > 1, then we say that a random sequence X : Q — RN defined
on a probability space (2, F,P) converges in L? to a random variable Xo : Q) — R, if

lim || X, — X[, = 0.

The convergence in L7 is denoted by lim;, X, = X in L.

Remark 1. For p € [1,00), the convergence of a random sequence X : QO — RN in L? to a random variable
Xoo 1 Q3 = R is equivalent to
ImE |X, — Xe|” =0.
n

Proposition 1.2 (Convergences L7 implies in probability). Consider p € [1,00) and a sequence of random
variables X : QO — RN defined on a probability space (Q,F, P) such that lim, X, = Xeo in LP, then lim, X, = Xeo
in probability.

Proof. Let € > 0, then from the Markov’s inequality applied to random variable |X,, — X|”, we have

E | X, — Xeo|

P{|Xy — Xeo| > €} < .

Example 1.3 (Convergence almost surely doesn’t imply convergence in L”). Consider the probability
space ([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. We define the scaled indicator
random variable X, : Q — {0,1} such that

Xn(w) = 2”]1[0 1] (w)

‘n

We define N = {0}, and for any w ¢ N, we can find m = [ 1], such that for all n > m, we have X, (w) =0.
Since A(N) =0, it implies that lim,, X,, = 0 a.s. However, we see that E | X, |/ = %

Remark 2. Convergence almost surely implies convergence in probability. Therefore, above examples also
serves as a counterexample to the fact that convergence almost surely doesn’t imply convergence in L.

Theorem 1.4 (L? weak law of large numbers). Consider a sequence of uncorrelated random variables X : Q) —
RN defined on a probability space (Q),F, P) such that EX,, = y and Var(X,,) = o2 for all n € N. Defining the sum
S, = i1 X; and the n-empirical mean X, 2 57”, we have lim, X,, = p in L2 and in probability.

Proof. From the uncorrelatedness of random sequence X, and linearity of expectation, we get

. . , 1 , 02
Var(X,) =E(X, —u)* = EJE(SH —np) = o

It follows that lim,, X, = u in L%. Since the convergence in L? implies convergence in probability, the result
holds. O



Theorem 1.5 (L! weak law of large numbers). Consider an i.i.d. random sequence X : QO — RN defined on a
probability space (Q),F, P) such that E | X;| < co and EXq = . Defining the sum S, = Y_!' | X; and the n-empirical
mean X, £ %, we have lim,, X,, = p in probability.

Example 1.6 (Convergence in L” doesn’t imply almost surely). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. For each k € IN, we consider the se-
quence Sy = Zle i, and define integer intervals Iy = {S;_; +1,...,S;}. Clearly, the intervals (I; : k € N)
partition the natural numbers, and each n € N lies in some I, , such that n = Sy, _1 + i, for i, € [ky].
Therefore, for each n € IN, we define indicator random variable X, : QQ — {0,1} such that

Xn(w)]l[fn—l z‘l](w)‘

kn "kn

For any w € [0,1], we have X, (w) =1 for infinitely many values since there exist infinitely many (i, k)

pairs such that (71) <w< i, and hence limsup, X, (w) = 1 and hence lim,, X, (w) # 0. However,
lim,, X, (w) = 01in LP, since

E|Xal? = A{Xn(w) £ 0} = kl

2 L' convergence theorems

Theorem 2.1 (Monotone Convergence Theorem). Consider a non-decreasing non-negative random sequence
X : Q — RY defined on a probability space (Q,F, P), such that X, € L! for all n € N. Let Xoo(w) = sup, Xn(w)
forall w € Q, then EXw = sup, EXj,.

Proof. From the monotonicity of sequence X and the monotonicity of expectation, we have sup, EX}, <
EXo. Letw € (0,1) and Y : QO — R a non-negative simple random variable such that Y < Xo,. We define

E,2{weQ: Xy(w)=aY}eT.

From the monotonicity of sequence X, the sequence of events (E, € F: n € IN) are monotonically non-
decreasing such that U,enE; = Q. It follows that

aE[Y1g,] <E[X,1E,] <EX,.

We will use the fact that lim, E[Y1g,| = E[Y], then aEY < sup, EX;,. Taking supremum over all « € (0,1)
and all simple functions Y < X, we get EXe < sup, EX,. O

Theorem 2.2 (Fatou’s Lemma). Consider a non-negative random sequence X : Q0 — R defined on a probability
space (Q,F,P). Let Xoo(w) = liminf, X, (w) for all w € Q, then EXe < liminf, EX,,.

Proof. We define Y, = infy, X for all n € IN. It follows that Y': () — ]R]IJ:I is a non-negative non-decreasing
sequence of random variables, and X« = sup,, Y;; = lim;, Y;;. By Motonone convergence theorem applies to

Y, we have EX« = sup, EY,. The result follows from the monotonicity of expectation, and the fact that
Y, < X forall k > n, to get EY,, <infy>, EX. O

Theorem 2.3 (Dominated Convergence Theorem). Let X : Q — RN be a random sequence defined on a proba-
bility space (Q,F, P). Iflimy, X, = X a.s. and there exists a Y : Q) — Ry such that Y € LY and |Xn| <Y as., then
EXe = lim, EX,.

Proof. From the hypothesis, we have Y + X, > 0 a.s. and Y — X,; > 0 a.s. Therefore, from Fatou’s Lemma
and linearity of expectation, we have

EY + EXe < liminfE(Y + X,;) = EY 4+ liminfEX,, EY —EXe <lminfE(Y — X,,) =EY — limsupEX,,.
n n n n

Therefore, we have limsup, EX;, < EXy < liminf, EX};, and the result follows. O



3 Uniform integrability

Definition 3.1 (uniform integrability). A family (X; € L' : t € T) of random variables indexed by T is
uniformly integrable if

lim suglE[IXd ]l{\X,|>u}] =0.
€

a—o0 ¢

Example 3.2 (Single element family). If |T| = 1, then the family is uniformly integrable, since X; € L!
and lim, E[|X1| 1{x,|>4}) = 0. This is due to the fact that (Xy 2 x| 1 x|<n} : m € N) is a sequence of

increasing random variables lim, X;, = X. From monotone convergence theorem, we get lim, E | X,,| =
Elim, | X} |. Therefore,

KmE[|X| 1¢x>q}] = E|X| — BmE[|X| 1{x)<q] =0.

Proposition 3.3. Let X € LP and (A, :n € N) C F be a sequence of events such that lim, P(A,) = 0, then

lim X[ 1, = 0.

Example 3.4 (Dominated family). If there exists Y € L! such that sup, . | X;| < |Y/|, then the family of
random variables (X; : t € T) is uniformly integrable. This is due to the fact that

iug]EHX\ Lx>ap) SE[|Y|1(y|>q)]-
(S

Example 3.5 (Finite family). then the family of random variables (X; : t € T) is uniformly integrable.
This is due to the fact that sup, ¢ | X¢| < Lyer | X¢| € L.

Theorem 3.6 (Convergence in probability with uniform integrability implies convergence in LF). Con-
sider a sequence of random variables (X, : n € IN) C LP for p > 1. Then the following are equivalent.

(a) The sequence (X, : n € N) converges in L?, i.e. lim, E|X, — X|V = 0.

(b) The sequence (X, : n € N) is Cauchy in LF, i.e. limy; n—00 E | Xy — Xin|P = 0.

(c) limy, X;, = X in probability and the sequence (| X, |V : n € N) is uniformly integrable.

Proof. For a random sequence (X, : n € IN) in L?, we will show that (a) = (b) = (¢) = (a).

(a) = (b) : We assume the sequence (X, : n € IN) converges in L?. Then, from Minkowski’s inequality,
we can write

1 1 1
(B X = X |")? < (B[Xn — X|P)P + (B [ X — X|F) .

(b) = (c): We assume that the sequence (X, : n € N) is Cauchy in L?, i.e. limy, o0 E | X, — Xiu|P = 0.
Let € > 0, then for each 1 € IN, there exists N, such that for all n,m > N¢

E[Xy — Xm|" <

N ™



Let A; = {w € A:|Xy| > a}. Then, using triangle inequality and the fact that 1 4, < 1, from the linearity
and monotonicity of expectation, we can write for n > Ne

1
< (B[IXN [P 14,17 +

==

< (B[ XN 14,])7 + (B[ X0 — X |"])

==

€
(E[|Xn " 1 x,[>a}]) 5

Therefore, we can write sup, E[|Xu| 1{x,>a}] < sup,,n. E[|Xm|" 14,] + §. Since (|Xu|": 1 < Ne) is
finite family of random variables in L!, it is uniformly integrable. Therefore, there exists a. € R such

1 1
thatsup,, . (E[|Xm|"14,])7 < §. Taking a’ = max {a,ac}, we get sup, (E[|X,|" 1|x,|>q}])? <e. Since
the choice of € was arbitrary, it follows that

1
. p »
}ggosgp(lE[anl Liix,>a3])? =0.
The convergence in probability follows from the Markov inequality, i.e.
1
P{|Xy — Xm|" > €} < “E X — XmlP .

= (a): Since the sequence (X, : n € IN) is convergent in probability to a random variable X, there
exists a subsequence (1 : k € N) C N such that limy X,,, = X a.s. Since (|X,|" : n € N) is a family of
uniformly integrable sequence, by Fatou’s Lemma

E[X|" < liminfE |X,,|" < supE|Xy|" < .
n

Therefore, X € L', and we define A, (e) = {| X, — X| > €} for any € > 0. From Minkowski’s inequality,
we get

1% = X, < | (X0 = X011, _xpec)

[t

T HX]lAn(e) )

< e. Further, since lim, X;, = X in probability, (A, :n € N) C F
p

is decreasing sequence of events, and since X;;, X € L', we have lim,,

We can check that H (Xn — X)L age)

=0.

Xn ]lA,, (e) = limn X]lAy, (e)

OJ
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