
Lecture-13: Lp convergence

1 Lp convergence

Definition 1.1 (Convergence in Lp). Let p ⩾ 1, then we say that a random sequence X : Ω → RN defined
on a probability space (Ω,F, P) converges in Lp to a random variable X∞ : Ω → R, if

lim
n

∥Xn − X∞∥p = 0.

The convergence in Lp is denoted by limn Xn = X∞ in Lp.

Remark 1. For p ∈ [1,∞), the convergence of a random sequence X : Ω → RN in Lp to a random variable
X∞ : Ω → R is equivalent to

lim
n

E |Xn − X∞|p = 0.

Proposition 1.2 (Convergences Lp implies in probability). Consider p ∈ [1,∞) and a sequence of random
variables X : Ω → RN defined on a probability space (Ω,F, P) such that limn Xn = X∞ in Lp, then limn Xn = X∞
in probability.

Proof. Let ϵ > 0, then from the Markov’s inequality applied to random variable |Xn − X|p, we have

P{|Xn − X∞| > ϵ}⩽ E |Xn − X∞|p

ϵ
.

Example 1.3 (Convergence almost surely doesn’t imply convergence in Lp). Consider the probability
space ([0,1],B([0,1]),λ) such that λ([a,b]) = b − a for all 0 ⩽ a ⩽ b ⩽ 1. We define the scaled indicator
random variable Xn : Ω → {0,1} such that

Xn(ω) = 2n
1[0, 1

n ]
(ω).

We define N = {0}, and for any ω /∈ N, we can find m≜ ⌈ 1
ω ⌉, such that for all n > m, we have Xn(ω) = 0.

Since λ(N) = 0, it implies that limn Xn = 0 a.s. However, we see that E |Xn|p = 2np

n .

Remark 2. Convergence almost surely implies convergence in probability. Therefore, above examples also
serves as a counterexample to the fact that convergence almost surely doesn’t imply convergence in Lp.

Theorem 1.4 (L2 weak law of large numbers). Consider a sequence of uncorrelated random variables X : Ω →
RN defined on a probability space (Ω,F, P) such that EXn = µ and Var(Xn) = σ2 for all n ∈ N. Defining the sum
Sn ≜ ∑n

i=1 Xi and the n-empirical mean X̄n ≜ Sn
n , we have limn X̄n = µ in L2 and in probability.

Proof. From the uncorrelatedness of random sequence X, and linearity of expectation, we get

Var(X̄n) = E(X̄n − µ)2 =
1
n2 E(Sn − nµ)2 =

σ2

n
.

It follows that limn X̄n = µ in L2. Since the convergence in Lp implies convergence in probability, the result
holds.
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Theorem 1.5 (L1 weak law of large numbers). Consider an i.i.d. random sequence X : Ω → RN defined on a
probability space (Ω,F, P) such that E |X1|< ∞ and EX1 = µ. Defining the sum Sn ≜ ∑n

i=1 Xi and the n-empirical
mean X̄n ≜ Sn

n , we have limn X̄n = µ in probability.

Example 1.6 (Convergence in Lp doesn’t imply almost surely). Consider the probability space
([0,1],B([0,1]),λ) such that λ([a,b]) = b − a for all 0 ⩽ a ⩽ b ⩽ 1. For each k ∈ N, we consider the se-
quence Sk = ∑k

i=1 i, and define integer intervals Ik ≜ {Sk−1 + 1, . . . ,Sk}. Clearly, the intervals (Ik : k ∈ N)
partition the natural numbers, and each n ∈ N lies in some Ikn , such that n = Sk+n−1 + in for in ∈ [kn].
Therefore, for each n ∈ N, we define indicator random variable Xn : Ω → {0,1} such that

Xn(ω)1[ in−1
kn

, in
kn ]

(ω).

For any ω ∈ [0,1], we have Xn(ω) = 1 for infinitely many values since there exist infinitely many (i,k)
pairs such that (i−1)

k ⩽ ω ⩽ i
k , and hence limsupn Xn(ω) = 1 and hence limn Xn(ω) ̸= 0. However,

limn Xn(ω) = 0 in Lp, since

E |Xn|p = λ{Xn(ω) ̸= 0} = 1
kn

.

2 L1 convergence theorems

Theorem 2.1 (Monotone Convergence Theorem). Consider a non-decreasing non-negative random sequence
X : Ω → RN

+ defined on a probability space (Ω,F, P), such that Xn ∈ L1 for all n ∈ N. Let X∞(ω) = supn Xn(ω)
for all ω ∈ Ω, then EX∞ = supn EXn.

Proof. From the monotonicity of sequence X and the monotonicity of expectation, we have supn EXn ⩽
EX∞. Let α ∈ (0,1) and Y : Ω → R+ a non-negative simple random variable such that Y ⩽ X∞. We define

En ≜ {ω ∈ Ω : Xn(ω)⩾ αY} ∈ F.

From the monotonicity of sequence X, the sequence of events (En ∈ F : n ∈ N) are monotonically non-
decreasing such that ∪n∈NEn = Ω. It follows that

αE[Y1En ]⩽ E[Xn1En ]⩽ EXn.

We will use the fact that limn E[Y1En ] = E[Y], then αEY ⩽ supn EXn. Taking supremum over all α ∈ (0,1)
and all simple functions Y ⩽ X∞, we get EX∞ ⩽ supn EXn.

Theorem 2.2 (Fatou’s Lemma). Consider a non-negative random sequence X : Ω → RN
+ defined on a probability

space (Ω,F, P). Let X∞(ω)≜ liminfn Xn(ω) for all ω ∈ Ω, then EX∞ ⩽ liminfn EXn.

Proof. We define Yn ≜ infk⩾n Xk for all n ∈ N. It follows that Y : Ω → RN
+ is a non-negative non-decreasing

sequence of random variables, and X∞ = supn Yn = limn Yn. By Motonone convergence theorem applies to
Y, we have EX∞ = supn EYn. The result follows from the monotonicity of expectation, and the fact that
Yn ⩽ Xk for all k ⩾ n, to get EYn ⩽ infk⩾n EXk.

Theorem 2.3 (Dominated Convergence Theorem). Let X : Ω → RN be a random sequence defined on a proba-
bility space (Ω,F, P). If limn Xn = X∞ a.s. and there exists a Y : Ω → R+ such that Y ∈ L1 and |Xn|⩽ Y a.s., then
EX∞ = limn EXn.

Proof. From the hypothesis, we have Y + Xn ⩾ 0 a.s. and Y − Xn ⩾ 0 a.s. Therefore, from Fatou’s Lemma
and linearity of expectation, we have

EY + EX∞ ⩽ liminf
n

E(Y + Xn) = EY + liminf
n

EXn, EY − EX∞ ⩽ liminf
n

E(Y − Xn) = EY − limsup
n

EXn.

Therefore, we have limsupn EXn ⩽ EX∞ ⩽ liminfn EXn, and the result follows.
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3 Uniform integrability

Definition 3.1 (uniform integrability). A family (Xt ∈ L1 : t ∈ T) of random variables indexed by T is
uniformly integrable if

lim
a→∞

sup
t∈T

E[|Xt|1{|Xt |>a}] = 0.

Example 3.2 (Single element family). If |T| = 1, then the family is uniformly integrable, since X1 ∈ L1

and lima E[|X1|1{|Xt |>a}] = 0. This is due to the fact that (Xn ≜ |X|1{|X|⩽n} : n ∈ N) is a sequence of
increasing random variables limn Xn = X. From monotone convergence theorem, we get limn E |Xn| =
E limn |Xn|. Therefore,

lim
a

E[|X|1{|X|>a}] = E |X| − lim
a

E[|X|1{|X|⩽a}] = 0.

Proposition 3.3. Let X ∈ Lp and (An : n ∈ N) ⊂ F be a sequence of events such that limn P(An) = 0, then

lim
n

∥|X|1An∥p = 0.

Example 3.4 (Dominated family). If there exists Y ∈ L1 such that supt∈T |Xt| ⩽ |Y|, then the family of
random variables (Xt : t ∈ T) is uniformly integrable. This is due to the fact that

sup
t∈T

E[|X|1{|X|>a}]⩽ E[|Y|1{|Y|>a}].

Example 3.5 (Finite family). then the family of random variables (Xt : t ∈ T) is uniformly integrable.
This is due to the fact that supt∈T |Xt|⩽ ∑t∈T |Xt| ∈ L1.

Theorem 3.6 (Convergence in probability with uniform integrability implies convergence in Lp). Con-
sider a sequence of random variables (Xn : n ∈ N) ⊂ Lp for p ⩾ 1. Then the following are equivalent.

(a) The sequence (Xn : n ∈ N) converges in Lp, i.e. limn E |Xn − X|p = 0.

(b) The sequence (Xn : n ∈ N) is Cauchy in Lp, i.e. limm,n→∞ E |Xn − Xm|p = 0.

(c) limn Xn = X in probability and the sequence (|Xn|p : n ∈ N) is uniformly integrable.

Proof. For a random sequence (Xn : n ∈ N) in Lp, we will show that (a) =⇒ (b) =⇒ (c) =⇒ (a).

(a) =⇒ (b) : We assume the sequence (Xn : n ∈ N) converges in Lp. Then, from Minkowski’s inequality,
we can write

(E |Xn − Xm|p)
1
p ⩽ (E |Xn − X|p)

1
p + (E |Xm − X|p)

1
p .

(b) =⇒ (c) : We assume that the sequence (Xn : n ∈ N) is Cauchy in Lp, i.e. limm,n→∞ E |Xn − Xm|p = 0.
Let ϵ > 0, then for each n ∈ N, there exists Nϵ such that for all n,m ⩾ Nϵ

E |Xn − Xm|p ⩽
ϵ

2
.
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Let Aa = {ω ∈ A : |Xn| > a}. Then, using triangle inequality and the fact that 1Aa ⩽ 1, from the linearity
and monotonicity of expectation, we can write for n ⩾ Nϵ

(E[|Xn|p1{|Xn |>a}])
1
p ⩽ (E[|XNϵ |

p
1Aa ])

1
p + (E[|Xn − XNϵ |

p])
1
p ⩽ (E[|XNϵ |

p
1Aa ])

1
p +

ϵ

2
.

Therefore, we can write supn E[|Xn|p1{|Xn |>a}] ⩽ supm⩽Nϵ
E[|Xm|p1Aa ] +

ϵ
2 . Since (|Xn|p : n ⩽ Nϵ) is

finite family of random variables in L1, it is uniformly integrable. Therefore, there exists aϵ ∈ R+ such

that supm⩽Nϵ
(E[|Xm|p1Aa ])

1
p < ϵ

2 . Taking a′ = max{a, aϵ}, we get supn(E[|Xn|p1{|Xn |>a′}])
1
p ⩽ ϵ. Since

the choice of ϵ was arbitrary, it follows that

lim
a→∞

sup
n
(E[|Xn|p1{|Xn |>a′}])

1
p = 0.

The convergence in probability follows from the Markov inequality, i.e.

P
{
|Xn − Xm|p > ϵ

}
⩽

1
ϵ

E |Xn − Xm|p .

(c) =⇒ (a) : Since the sequence (Xn : n ∈ N) is convergent in probability to a random variable X, there
exists a subsequence (nk : k ∈ N) ⊂ N such that limk Xnk = X a.s. Since (|Xn|p : n ∈ N) is a family of
uniformly integrable sequence, by Fatou’s Lemma

E |X|p ⩽ liminf
k

E
∣∣Xnk

∣∣p ⩽ sup
n

E |Xn|p < ∞.

Therefore, X ∈ L1, and we define An(ϵ) = {|Xn − X| > ϵ} for any ϵ > 0. From Minkowski’s inequality,
we get

∥Xn − X∥p ⩽
∥∥∥(Xn − X)1{|Xn−X|p⩽ϵ}

∥∥∥
p
+

∥∥∥Xn1An(ϵ)

∥∥∥
p
+

∥∥∥X1An(ϵ)

∥∥∥
p

.

We can check that
∥∥∥(Xn − X)1Ac

n(ϵ)

∥∥∥
p
⩽ ϵ. Further, since limn Xn = X in probability, (An : n ∈ N) ⊂ F

is decreasing sequence of events, and since Xn, X ∈ L1, we have limn

∥∥∥Xn1An(ϵ)

∥∥∥= limn

∥∥∥X1An(ϵ)

∥∥∥= 0.
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