
Lecture-19: Discrete Time Markov Chains

1 Markovity for countable state sequences

We have seen that i.i.d. sequences are easiest discrete time random processes. However, they don’t capture
correlation well.

Definition 1.1. For a state space X⊆ R and the random sequence X : Ω → XZ+ , we define the history until
time n ∈ Z+ as Fn = σ(X1, . . . , Xn).

Remark 1. Recall that the event space Fn is generated by the historical events of the form

AX(x) = ∩n
i=1 {Xi ⩽ xi} , where x ∈ Rn.

Remark 2. When the state space X is countable, the event space Fn is generated by the historical events of
the form

Hn(x) = ∩n
i=1 {Xi = xi} , where x ∈ Xn.

Definition 1.2 (DTMC). For a countable set X, a discrete-valued random sequence X : Ω → XZ+ is called a
discrete time Markov chain (DTMC) if for all positive integers n ∈ Z+, all states x,y ∈X, and any historical
event Hn−1 = ∩n−1

m=0 {Xm = xm} ∈ Fn for (x0, . . . , xn−1) ∈ Xn, the process X satisfies the Markov property

P({Xn+1 = y}
∣∣ Hn−1 ∩ {Xn = x}) = P({Xn+1 = y}

∣∣ {Xn = x}).

Remark 3. The above definition is equivalent to P({Xn+1 ⩽ x}
∣∣ Fn) = P({Xn+1 ⩽ x}

∣∣ σ(Xn)), for discrete
time discrete state space Markov chain, since Fn = σ(Hn(x) : x ∈ Xn) and σ(Xn) = σ({Xn = x} , x ∈ X).

2 Transition probability matrix

Definition 2.1. We denote the set of all probability mass functions over a countable state space X by
M(X)≜

{
ν ∈ [0,1]X : ∑x∈X νx = 1

}
.

Definition 2.2. The transition probability matrix at time n is denoted by P(n) ∈ [0,1]X×X, such that
Pxy(n) = pxy(n) is the transition probability of a discrete time Markov chain X being in state y ∈ X at
time n + 1 from a state x ∈ X at time n, denoted by pxy(n)≜ P({Xn+1 = y}

∣∣ {Xn = x}).
Remark 4. We observe that each row Px(n) = (pxy(n) : y ∈X) ∈M(X) is the conditional distribution of Xn+1
given the event {Xn = x}.

Example 2.3 (Random Walk). A random walk S : Ω → XN with independent step-size sequence X :
Ω →XN, is a Markov sequence for countable state space X. For the countable state space X, an given the
historical event Hn−1(s)≜ ∩n−1

k=1 {Sk = sk} and the current state {Sn = sn}, we can write the conditional
probability

P({Sn+1 = sn+1}
∣∣ Hn−1(s) ∩ {Sn = sn}) = P({Xn+1 = sn+1 − Sn}

∣∣ Hn−1(s) ∩ {Sn = sn})
= P({Sn+1 = sn+1}

∣∣ {Sn = sn}) = P{Xn+1 = sn+1 − sn} .

The equality in the second line follows from the independence of the step-size sequence. In particular,
from the independence of Xn+1 from the collection σ(S0, X1, . . . , Xn) = σ(S0,S1, . . . ,Sn).
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Definition 2.4. A matrix A ∈ RX×X
+ with non-negative entries is called sub-stochastic if the row-sum

∑y∈X axy ⩽ 1 for all rows x ∈ X. If the above property holds with equality for all rows, then it is called
a stochastic matrix. If matrices A and AT are both stochastic, then the matrix A is called doubly stochastic.

Remark 5. We make the following observations for the stochastic matrices.

i Every probability transition matrix P(n) is a stochastic matrix.

ii All the entries of a sub-stochastic matrix lie in [0,1].

iii Each row Ax ≜ (axy : y ∈ X) of the stochastic matrix A ∈ RX×X
+ belongs to M(X).

iv Every finite stochastic matrix has a right eigenvector with unit eigenvalue. This can be observed by
taking 1T =

[
1 . . . 1

]
to be an all-one vector of length |X|. Then we see that A1 = 1, since

(A1)x = ∑
y∈X

axy1y = ∑
y∈X

axy = 1x, for each x ∈ X.

v Every finite doubly stochastic matrix has a left and right eigenvector with unit eigenvalue. This follows
from the fact that finite stochastic matrices A and AT have a common right eigenvector 1. It follows
that A has a left eigenvector 1T .

vi For a probability transition matrix P(n), we have ∑y∈X f (y)pxy(n) = E[ f (Xn+1)
∣∣ Xn = x].

3 Homogeneous Markov chains

In general, not much can be said about Markov chains with index dependent transition probabilities.
Hence, we consider the simpler case where the transition probabilities pxy(n) = pxy are independent of
the index.

Definition 3.1. A discrete time Markov chain with the probability transition matrix P(n) that is indepen-
dent of the index, is called time homogeneous.

Example 3.2 (Integer random walk). For a one-dimensional integer valued random walk S : Ω → ZN

with i.i.d. unit step size sequence X : Ω → {−1,1}N such that P{X1 = 1} = p, the transition operator
P ∈ [0,1]Z×Z is given by the entries pxy = p1{y=x+1} + (1 − p)1{y=x−1} for all x,y ∈ Z.

Example 3.3 (Sequence of experiments). Consider a random sequence of experiment outcomes X :
Ω →{0,1}Z

+, such that P({Xn+1 = 0} | {Xn = 0}) = 1 − q and P({Xn+1 = 1} | {Xn = 1}) = 1 − p for all
n ∈ Z+. Then, we can write the probability transition matrix as

P =

[
1 − q q

p 1 − p

]
.

Definition 3.4. Consider a time homogeneous Markov chain X : Ω →XZ+ with countable state space X and
transition matrix P. We would respectively denote the conditional probability of events and conditional
expectation of random variables, conditioned on the initial state {X0 = x}, by

Px(A)≜ P(A
∣∣ {X0 = x}), Ex[Y]≜ E

[
Y
∣∣ {X0 = x}

]
.

3.1 Transition graph

A time homogeneous Markov chain X : Ω →XN with a probability transition matrix P, is sometimes repre-
sented by a directed weighted graph G = (X, E,w), where the set of nodes in the graph G is the state space
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X, and the set of directed edges is the set of possible one-step transitions indicated by the initial and the
final state, as

E ≜
{
[x,y⟩ ∈ X×X : pxy > 0

}
.

In addition, this graph has a weight we = pxy on each edge e = [x,y⟩ ∈ E.

Example 3.5 (Integer random walk). The time homogeneous Markov chain in Example 3.2 can be
represented by an infinite state weighted graph G = (Z, E,w), where the edge set is

E = {(n,n + 1) : n ∈ Z} ∪ {(n,n − 1) : n ∈ Z} .

We have plotted the sub-graph of the entire transition graph for states {−1,0,1} in Figure 1.
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Figure 1: Sub-graph of the entire transition graph for an integer random walk with i.i.d. step-sizes in {−1,1}
with probability p for the positive step.

Example 3.6 (Sequence of experiments). The time homogeneous Markov chain in Example 3.3 can be
represented by the following two-state weighted transition graph G = ({0,1} , E,w), plotted in Figure 2.
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Figure 2: Markov chain for the sequence of experiments with two outcomes.

4 n-step transition

Definition 4.1. For a time homogeneous Markov chain X : Ω → XZ+ we denote the probability mass func-
tion of Markov chain at step n by πn ∈M(X).

Proposition 4.2. Conditioned on the initial state, any finite dimensional distribution of a homogeneous Markov
chain is stationary. That is, for any finite n,m ∈ Z+ and states x0, . . . , xn ∈ X, we have

P(∩n
i=1 {Xi = xi}

∣∣ {X0 = x0}) = P(∩n
i=1 {Xm+i = xi}

∣∣ {Xm = x0}) =
n

∏
i=1

pxi−1xi .

Proof. To this end, we compute the transition probabilities for the path (x1, . . . , xn) taken by
(i) the sample path (X1, . . . , Xn) given the event {X0 = x0} and
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(ii) by the sample path (Xm+1, . . . , Xm+n) given the event {Xm = x0}.
For each i ∈ {0, . . . ,n}, we can define events Hi ≜ ∩i

j=0
{

Xj = xj
}

. We observe that Hi = {Xi = xi} ∩ Hi−1

and Hi ∈ Fi = σ(X0, . . . , Xi) for all i ∈ N. From the definition of event Hn−1 and the conditional probability,
we can write

Px0(Hn) = Px0({Xn = xn} ∩ Hn−1) = P({Xn = xn}
∣∣ Hn−1)Px0(Hn−1).

Using the fact that Hn−1 = {Xn−1 = xn−1} ∩ Hn−2, and the Markovity and homogeneity of the process X,
we obtain

P({Xn = xn}
∣∣ Hn−1) = P({Xn = xn}

∣∣ {Xn−1 = xn−1} ∩ Hn−2) = pxn−1xn .

Inductively, we can write the conditional joint distribution of Hn given the event {X0 = x0} as

Px0(Hn) = px0x1 . . . pxn−1xn .

Similarly, we can write for the sample path (Xm+1, . . . , Xm+n) given Xm = x0,

P({Xm+1 = x1, . . . , Xm+n = xn}
∣∣ {Xm = x0}) =

n

∏
i=1

P({Xm+i = xi)}
∣∣ {Xm+i−1 = xi−1}) = px0x1 . . . pxn−1xn .

Corollary 4.3. The n-step transition probabilities are stationary for any homogeneous Markov chain. That is, for any
states x0, xn ∈ X and n,m ∈ N, we have

P({Xn+m = xn} |{Xm = x0}) = P({Xn = xn} |{X0 = x0}).

Proof. It follows from summing over intermediate steps. Let x ≜ (x1, . . . , xn−1)∈Xn−1, then we can partition
the event {Xn = xn} in terms of disjoint events

{
Hn−1(x) ∩ {X = xn}) : x ∈ Xn−1} defined by Hn−1(x) ≜

∩n−1
i=1 {Xi = xi}, and partition the event {Xm+n = xn} in terms of the disjoint events

{
Fn−1(x) ∩ {Xm+n = xn}) : x ∈ Xn−1}

defined by Fn−1(x)≜ ∩n−1
i=1 {Xm+i = xi}. Then, we can write

{Xn = xn} = ∪x∈Xn−1 Hn−1(x) ∩ {Xn = xn} , {Xm+n = xn} = ∪x∈Xn−1 Fn−1(x) ∩ {Xm+n = xn} .

From the stationarity in joint distribution conditioned on initial state for the homogeneous Markov chain
X, we have

P(Fn−1(x) ∩ {Xm+n = xn}
∣∣ {Xm = x0}) = P(Hn−1(x) ∩ {Xn = xn}

∣∣ {X0 = x0}).

Using the law of total probability, we can write the conditional probability

Px0 {Xn = xn} = ∑
x∈Xn−1

Px0(Hn−1(x) ∩ {Xn = xn}),

P({Xm+n = xn} | {Xm = x0}) = ∑
x∈Xn−1

P(Fn−1(x) ∩ {Xm+n = xn} | {Xm = x0}).

The result follows since each term in the summation is equal.

Definition 4.4. For a time homogeneous Markov chain X : Ω → XZ+ , we can define n-step transition
probability matrix P(n), with its (x,y) entry being the n-step transition probability for Xm+n to be in state
y given the event {Xm = x}. That is, p(n)xy ≜ P({Xn+m = y} |{Xm = x}) for all x,y ∈ X and m,n ∈ Z+.

Remark 6. That is, the row P(n)
x = (p(n)xy : y ∈X) ∈M(X) is the conditional distribution of Xn given the initial

state {X0 = x}.
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Example 4.5 (Sequence of experiments). Consider the time homogeneous Markov chain X : Ω → ZZ+

introduced in Example 3.3. We denote the conditional distribution of Xn+1 given {X0 = 0} by νn+1, and
the conditional distribution of Xn+1 given {X0 = 1} by µn+1. That is,

νn =
[
P0({Xn = 0}) P0({Xn = 1})

]
,

µn =
[
P1({Xn = 0}) P1({Xn = 1})

]
.

Let π0 be the initial distribution on the experiment outcome, and πn be the distribution of the experi-
ment outcome at time n. Then, we can write

πn(0)≜ P{Xn = 0} = P0({Xn = 0})π0(0) + P1({Xn = 0})π0(1) = νn(0)π0(0) + µn(0)π0(1).

Similarly, we can write πn(1) = νn(1)π0(0) + µn(1)π0(1). That is, we can write

πn ≜
[
πn(0) πn(1)

]
=

[
π0(0) π0(1)

][νn(0) νn(1)
µn(0) µn(1)

]
= π0

[
νn
µn

]
.

That is to compute the unconditional distribution of Xn, given initial distribution π0, we need to com-
pute conditional distributions νn and µn. We can see that

ν1 =
[
1 − p p

]
, ν2 =

[
(1 − p)2 + pq (1 − p)p + p(1 − q)

]
,

µ1 =
[
q 1 − q

]
, µ2 =

[
q(1 − p) + (1 − q)q (1 − q)2 + qp

]
.

This method of direct computation can quickly become too cumbersome.

Theorem 4.6. The n-step transition probabilities for a homogeneous Markov chain form a semi-group. That is, for
all positive integers m,n ∈ Z+

P(m+n) = P(m)P(n).

Proof. The events {{Xm = z} : z ∈ X} partition the sample space Ω, and hence we can express the event
{Xm+n = y} as the following disjoint union

{Xm+n = y} = ∪z∈X {Xm+n = y, Xm = z} .

It follows from the Markov property and law of total probability that for any states x,y and positive integers
m,n

p(m+n)
xy = ∑

z∈X
Px({Xn+m = y, Xm = z}) = ∑

z∈X
P(

{
Xn+m = y

∣∣ Xm = z, X0 = x
}
)Px({Xm = z})

= ∑
z∈X

P(
{

Xn+m = y
∣∣ Xm = z

}
)Px({Xm = z}) = ∑

z∈X
p(m)

xz p(n)zy = (P(m)P(n))xy.

Since the choice of states x,y ∈ X were arbitrary, the result follows.

Corollary 4.7. The n-step transition probability matrix is given by P(n) = Pn for any positive integer n.

Proof. In particular, we have P(n+1) = P(n)P(1) = P(1)P(n). Since P(1) = P, we have P(n) = Pn by induction.

Remark 7. That is, for all states x,y and non-negative integers n ∈ Z+, p(n)xy = Pn
xy.

5 Chapman Kolmogorov equations

We denote by π0 ∈ RX
+ the initial distribution of the Markov chain, that is π0(x) = P{X0 = x}. The distri-

bution of Xn is given by πn ∈ RX
+ , such that for any state x ∈ X.

πn(x) = P{Xn = x} = ∑
z∈X

p(n)zx π0(z) = (π0Pn)x.
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We can write this succinctly in terms of transition probability matrix P as µn = µ0Pn. We can alternatively
derive this result by the following Lemma.

Lemma 5.1. The right multiplication of a probability vector with the transition matrix P transforms the probability
distribution of current state to probability distribution of the next state. That is,

πn+1 = πnP, for all n ∈ N.

Proof. To see this, we fix y ∈ X and from the law of total probability and the definition conditional proba-
bility, we observe that

πn+1(y) = P{Xn+1 = y} = ∑
x∈X

P{Xn+1 = y, Xn = x} = ∑
x∈X

P{Xn = x} pxy = (πnP)y.
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