Lecture-20: Strong Markov Property

1 Random mapping theorem

We saw some example of Markov processes where $X_n = X_{n-1} + Z_n$, and $(Z_n : n \in \mathbb{N})$ is an iid sequence, independent of the initial state X_0 . We will show that any discrete time Markov chain is of this form, where the sum is replaced by arbitrary functions.

Theorem 1.1 (Random mapping theorem). For any DTMC X, there exists an i.i.d. sequence $Z \in \Lambda^{\mathbb{N}}$ and a function $f : \mathfrak{X} \times \Lambda \to \mathfrak{X}$ such that $X_n = f(X_{n-1}, Z_n)$ for all $n \in \mathbb{N}$.

Remark 1. A **random mapping representation** of a transition matrix *P* on state space \mathfrak{X} is a function *f* : $\mathfrak{X} \times \Lambda \rightarrow \mathfrak{X}$, along with a Λ -valued random variable *Y*, satisfying

$$P\{f(x,Y) = y\} = p_{xy}, \text{ for all } x, y \in \mathcal{X}.$$

Proof. It suffices to show that every transition matrix *P* has a random mapping representation. Then for the mapping *f* and the *i.i.d* sequence $Z = (Z_n : n \in \mathbb{N})$ with the same distribution as random variable *Y*, we would have $X_n = f(X_{n-1}, Z_n)$ for all $n \in \mathbb{N}$.

Let $\Lambda = [0, 1]$, and we choose the *i.i.d.* sequence *Z*, uniformly at random from this interval. Since \mathfrak{X} is countable, it can be ordered. We let $\mathfrak{X} = \mathbb{N}$ without any loss of generality. We set $F_{xy} \triangleq \sum_{w \leq y} p_{xw}$ and define

$$f(x,z) = \sum_{y \in \mathbb{N}} y \mathbb{1}_{\left\{F_{x,y-1} < z \leqslant F_{x,y}\right\}} = \inf \left\{y \in \mathcal{X} : z \leqslant F_{x,y}\right\}.$$

Since $f(x, Z_n)$ is a discrete random variable taking value $y \in \mathcal{X}$, iff the uniform random variable Z_n lies in the interval $(F_{x,y-1}, F_{x,y}]$. That is, the event $\{f(x, Z_n) = y\} = \{Z_n \in (F_{x,y-1}, F_{x,y}]\}$ for all $y \in \mathcal{X}$. It follows that

$$P\{f(x,Z) = y\} = P\{F_{x,y-1} < Z \leqslant F_{x,y}\} = F_{x,y} - F_{x,y-1} = p_{xy}.$$

2 Strong Markov property (SMP)

We are interested in generalizing the Markov property to any random times. For a DTMC $X : \Omega \to \mathcal{X}^{\mathbb{Z}_+}$, let $T : \Omega \to \mathbb{N}$ be an integer random variable, and we are interested in knowing whether for any historical event $H_{T-1} = \bigcap_{n=0}^{T-1} \{X_n = x_n\}$ and any state $x, y \in \mathcal{X}$, we have

$$P(\{X_{T+1} = y\} \mid H_{T-1} \cap \{X_T = x\}) = p_{xy}.$$

Example 2.1 (Two-state DTMC). For the two state Markov chain $X \in \{0,1\}^{\mathbb{Z}_+}$ such that $P_0\{X_1 = 1\} = q$ and $P_1\{X_1 = 0\} = p$ for $p, q \in [0,1]$. Let $T : \Omega \to \mathbb{N}$ be an integer random variable defined as

$$T \triangleq \sup \{n \in \mathbb{N} : X_i = 0, \text{ for all } i \leq n\}.$$

That is, $\{T = n\} = \{X_1 = 0, ..., X_n = 0, X_{n+1} = 1\}$. Hence, for the historical event $H_{T-1} = \{X_1 = ..., X_{T-1} = 0\}$, the conditional probability $P(\{X_{T+1} = 1\} | H_{T-1} \cap \{X_T = 0\}) = 1$, and not equal to q.

Definition 2.2. Let *T* be an integer valued stopping time with respect to a random sequence *X*. Then for all states $x, y \in \mathcal{X}$ and the event $H_{T-1} = \bigcap_{n=0}^{T-1} \{X_n = x_n\}$, the process *X* satisfies the **strong Markov property** if

$$P(\{X_{T+1} = y\} \mid \{X_T = x\} \cap H_{T-1}) = P(\{X_{T+1} = y\} \mid \{X_T = x\}).$$

Lemma 2.3. Homogeneous Markov chains satisfy the strong Markov property.

Proof. Let $X \in \mathfrak{X}^{\mathbb{Z}_+}$ be a homogeneous DTMC with transition matrix *P*. We take any historical event $H_{T-1} = \bigcap_{n=0}^{T-1} \{X_n = x_n\}$, and $x, y \in \mathfrak{X}$. Then, from the definition of conditional probability, the law of total probability, and the Markovity of the process *X*, we have

$$P(\{X_{T+1} = y\} \mid H_{T-1} \cap \{X_T = x\}) = \frac{\sum_{n \in \mathbb{Z}_+} P(\{X_{T+1} = y, X_T = x\} \cap H_{T-1} \cap \{T = n\})}{P(\{X_T = x\} \cap H_{T-1})}$$

= $\sum_{n \in \mathbb{Z}_+} P(\{X_{n+1} = y\} \mid \{X_n = x\} \cap H_{n-1} \cap \{T = n\}) P(\{T = n\} \mid \{X_T = x\} \cap H_{T-1})$
= $p_{xy} \sum_{n \in \mathbb{Z}_+} P(\{T = n\} \mid \{X_T = x\} \cap H_{T-1}) = p_{xy}.$

This equality follows from the fact that the event $\{T = n\}$ is completely determined by (X_0, \dots, X_n) .

Example 2.4 (For a non stopping time *T*). As an exercise, if we try to use the Markov property on arbitrary random variable *T*, the SMP may not hold. For example, define a non-stopping time $T \triangleq \inf \{n \in \mathbb{Z}_+ : X_{n+1} = y\}$ for $y \in \mathcal{X}$. In this case, we have

$$P(\{X_{T+1} = y\} \mid \{X_T = x, \dots, X_0 = x_0\}) = \mathbb{1}_{\{p_{xy} > 0\}} \neq P(\{X_1 = y\} \mid \{X_0 = x\}) = p_{xy}.$$

Remark 2. A useful application of the strong Markov property is as follows. Let $x_0 \in X$ be a fixed state and $\tau_0 = 0$. Let τ_n denote the stopping times at which the Markov chain visits x_0 for the *n*th time. That is,

$$\tau_n \triangleq \inf \left\{ n > \tau_{n-1} : X_n = x_0 \right\}.$$

Then $(X_{\tau_n+m} \in \mathfrak{X}^{\Omega} : m \in \mathbb{Z}_+)$ is a stochastic replica of $X : \Omega \to \mathfrak{X}^{\mathbb{Z}_+}$ with $X_0 = x_0$.

3 Hitting and Recurrence Times

We will consider a time-homogeneous discrete time Markov chain $X : \Omega \to X^{\mathbb{Z}_+}$ on countable state space \mathfrak{X} with transition probability matrix $P : \mathfrak{X} \times \mathfrak{X} \to [0,1]$, and initial state $X_0 = x \in \mathfrak{X}$. We denote the natural filtration generated by the process X as \mathcal{F}_{\bullet} , where $\mathcal{F}_n \triangleq \sigma(X_0, \dots, X_n)$ for all $n \in \mathbb{N}$.

Remark 3. Starting from state *x*, the mean number of visits to state *y* in *n* steps is $\mathbb{E}_x N_y(n) = \sum_{k=1}^n p_{xy}^{(k)}$. From the monotone convergence theorem, we also get that $E_x N_y(\infty) = \sum_{k \in \mathbb{N}} p_{xy}^{(k)}$.

Remark 4. If $\tau_X^{\{y\},k-1}$ is almost sure finite, then $\tau_X^{\{y\},k-1}$ is a stopping time for process X. Therefore, from the strong Markov property for X and the fact that $\{H_X^{\{y\},k} = n\} \in \sigma(X_{\tau_X^{\{y\},k-1}+j} : j \in [n])$ for all $n \in \mathbb{N}$, we observe that $H_X^{\{y\},k}$ given $X_{\tau_X^{\{y\},k-1}}$ is independent of the random past $\sigma(X_0,\ldots,X_{\tau_X^{\{y\},k-1}})$. Since $X_{\tau_X^{\{y\},k-1}} = y$ deterministically, it follows that $H_X^{\{y\},k}$ is independent of the random past $\sigma(X_0,\ldots,X_{\tau_X^{\{y\},k-1}})$. It follows that $(H_X^{\{y\},1},\ldots,H_X^{\{y\},k})$ are independent random variables.

Remark 5. If $\tau_X^{\{y\},k-1}$ is almost sure finite, then from strong Markov property of *X*, we observe that $(X_{\tau_X^{\{y\},k-1}+j}: j \in \mathbb{N})$ is distributed identically to $(X_{\tau_X^{\{y\},\ell}+j}: j \in \mathbb{N})$. That is, $(H_X^{\{y\},k}: k \ge 2)$ are distributed identically.

Lemma 3.1. If $H_X^{\{y\},1}$ and $H_X^{\{y\},2}$ are almost surely finite, then the random sequence $(H_X^{\{y\},k}:k \ge 2)$ is i.i.d..

Proof. From above two remarks, it suffices to show that $(\tau_X^{\{y\},k}: k \in \mathbb{N})$ are almost surely finite. We will show this by induction. Since $\tau_X^{\{y\},\ell} = H_X^{\{y\},1}$ is almost surely finite, $\tau_X^{\{y\},\ell}$ is stopping time. Since $\tau_X^{\{y\},\ell} = \tau_X^{\{y\},\ell} + H_X^{\{y\},2}$ is almost surely finite, it follows that $\tau_X^{\{y\},2}$ is a stopping time. By inductive hypothesis $\tau_X^{\{y\},k-1}$ is almost surely finite, and hence $H_X^{\{y\},k}$ is independent of $(H_X^{\{y\},1},\ldots,H_X^{\{y\},k})$ and identically distributed to $H_X^{\{y\},2}$ and is almost surely finite. It follows that $\tau_X^{\{y\},k} = \tau_X^{\{y\},k-1} + H_X^{\{y\},k}$ is almost surely finite. It follows that $\tau_X^{\{y\},k} = \tau_X^{\{y\},k-1} + H_X^{\{y\},k}$ is almost surely finite, and the result follows.