
Lecture-20: Strong Markov Property

1 Random mapping theorem

We saw some example of Markov processes where Xn = Xn−1 + Zn, and (Zn : n ∈ N) is an iid sequence,
independent of the initial state X0. We will show that any discrete time Markov chain is of this form, where
the sum is replaced by arbitrary functions.

Theorem 1.1 (Random mapping theorem). For any DTMC X, there exists an i.i.d. sequence Z ∈ ΛN and a
function f : X× Λ → X such that Xn = f (Xn−1, Zn) for all n ∈ N.

Remark 1. A random mapping representation of a transition matrix P on state space X is a function f :
X× Λ → X , along with a Λ-valued random variable Y, satisfying

P{ f (x,Y) = y} = pxy, for all x,y ∈ X.

Proof. It suffices to show that every transition matrix P has a random mapping representation. Then for the
mapping f and the i.i.d sequence Z = (Zn : n ∈ N) with the same distribution as random variable Y, we
would have Xn = f (Xn−1, Zn) for all n ∈ N.

Let Λ = [0,1], and we choose the i.i.d. sequence Z, uniformly at random from this interval. Since X is
countable, it can be ordered. We let X= N without any loss of generality. We set Fxy ≜ ∑w⩽y pxw and define

f (x,z) = ∑
y∈N

y1{Fx,y−1<z⩽Fx,y} = inf
{

y ∈ X : z ⩽ Fx,y
}

.

Since f (x, Zn) is a discrete random variable taking value y ∈ X, iff the uniform random variable Zn lies in
the interval (Fx,y−1, Fx,y]. That is, the event { f (x, Zn) = y} =

{
Zn ∈ (Fx,y−1, Fx,y]

}
for all y ∈ X. It follows

that
P{ f (x, Z) = y} = P

{
Fx,y−1 < Z ⩽ Fx,y

}
= Fx,y − Fx,y−1 = pxy.

2 Strong Markov property (SMP)

We are interested in generalizing the Markov property to any random times. For a DTMC X : Ω → XZ+ ,
let T : Ω → N be an integer random variable, and we are interested in knowing whether for any historical
event HT−1 = ∩T−1

n=0 {Xn = xn} and any state x,y ∈ X, we have

P({XT+1 = y}
∣∣ HT−1 ∩ {XT = x}) = pxy.

Example 2.1 (Two-state DTMC). For the two state Markov chain X ∈ {0,1}Z+ such that P0 {X1 = 1}= q
and P1 {X1 = 0} = p for p,q ∈ [0,1]. Let T : Ω → N be an integer random variable defined as

T ≜ sup{n ∈ N : Xi = 0, for all i ⩽ n} .

That is, {T = n} = {X1 = 0, . . . , Xn = 0, Xn+1 = 1}. Hence, for the historical event HT−1 =
{X1 = . . . , XT−1 = 0}, the conditional probability P({XT+1 = 1}

∣∣ HT−1 ∩ {XT = 0}) = 1, and not equal
to q.
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Definition 2.2. Let T be an integer valued stopping time with respect to a random sequence X. Then for all
states x,y ∈ X and the event HT−1 = ∩T−1

n=0 {Xn = xn}, the process X satisfies the strong Markov property if

P({XT+1 = y}
∣∣ {XT = x} ∩ HT−1) = P({XT+1 = y}

∣∣ {XT = x}).

Lemma 2.3. Homogeneous Markov chains satisfy the strong Markov property.

Proof. Let X ∈ XZ+ be a homogeneous DTMC with transition matrix P. We take any historical event
HT−1 = ∩T−1

n=0 {Xn = xn}, and x,y ∈ X. Then, from the definition of conditional probability, the law of total
probability, and the Markovity of the process X, we have

P({XT+1 = y}
∣∣ HT−1 ∩ {XT = x}) =

∑n∈Z+
P({XT+1 = y, XT = x} ∩ HT−1 ∩ {T = n})

P({XT = x} ∩ HT−1)

= ∑
n∈Z+

P({Xn+1 = y}
∣∣ {Xn = x} ∩ Hn−1 ∩ {T = n})P({T = n} |{XT = x} ∩ HT−1)

= pxy ∑
n∈Z+

P({T = n} |{XT = x} ∩ HT−1) = pxy.

This equality follows from the fact that the event {T = n} is completely determined by (X0, . . . , Xn).

Example 2.4 (For a non stopping time T). As an exercise, if we try to use the Markov property on
arbitrary random variable T, the SMP may not hold. For example, define a non-stopping time T ≜
inf{n ∈ Z+ : Xn+1 = y} for y ∈ X. In this case, we have

P({XT+1 = y}
∣∣ {XT = x, . . . , X0 = x0}) = 1{pxy>0} ̸= P({X1 = y}

∣∣ {X0 = x}) = pxy.

Remark 2. A useful application of the strong Markov property is as follows. Let x0 ∈ X be a fixed state and
τ0 = 0. Let τn denote the stopping times at which the Markov chain visits x0 for the nth time. That is,

τn ≜ inf{n > τn−1 : Xn = x0} .

Then (Xτn+m ∈ XΩ : m ∈ Z+) is a stochastic replica of X : Ω → XZ+ with X0 = x0.

3 Hitting and Recurrence Times

We will consider a time-homogeneous discrete time Markov chain X : Ω → XZ+ on countable state space
X with transition probability matrix P : X× X→ [0,1], and initial state X0 = x ∈ X. We denote the natural
filtration generated by the process X as F•, where Fn ≜ σ(X0, . . . , Xn) for all n ∈ N.

Remark 3. Starting from state x, the mean number of visits to state y in n steps is Ex Ny(n) = ∑n
k=1 p(k)xy . From

the monotone convergence theorem, we also get that Ex Ny(∞) = ∑k∈N p(k)xy .

Remark 4. If τ
{y},k−1
X is almost sure finite, then τ

{y},k−1
X is a stopping time for process X. Therefore, from

the strong Markov property for X and the fact that
{

H{y},k
X = n

}
∈ σ(X

τ
{y},k−1
X +j

: j ∈ [n]) for all n ∈ N, we

observe that H{y},k
X given X

τ
{y},k−1
X

is independent of the random past σ(X0, . . . , X
τ
{y},k−1
X

). Since X
τ
{y},k−1
X

= y

deterministically, it follows that H{y},k
X is independent of the random past σ(X0, . . . , X

τ
{y},k−1
X

). It follows that

(H{y},1
X , . . . , H{y},k

X ) are independent random variables.

Remark 5. If τ
{y},k−1
X is almost sure finite, then from strong Markov property of X, we observe that (X

τ
{y},k−1
X +j

:

j ∈ N) is distributed identically to (X
τ
{y},ℓ
X +j

: j ∈ N). That is, (H{y},k
X : k ⩾ 2) are distributed identically.
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Lemma 3.1. If H{y},1
X and H{y},2

X are almost surely finite, then the random sequence (H{y},k
X : k ⩾ 2) is i.i.d. .

Proof. From above two remarks, it suffices to show that (τ{y},k
X : k ∈N) are almost surely finite. We will show

this by induction. Since τ
{y},ℓ
X = H{y},1

X is almost surely finite, τ
{y},ℓ
X is stopping time. Since τ

{y},2
X = τ

{y},ℓ
X +

H{y},2
X is almost surely finite, it follows that τ

{y},2
X is a stopping time. By inductive hypothesis τ

{y},k−1
X is

almost surely finite, and hence H{y},k
X is independent of (H{y},1

X , . . . , H{y},k
X ) and identically distributed to

H{y},2
X and is almost surely finite. It follows that τ

{y},k
X = τ

{y},k−1
X + H{y},k

X is almost surely finite, and the
result follows.
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