
Lecture-24: Poisson Processes

1 Simple point processes

Consider the d-dimensional Euclidean space Rd. The collection of Borel measurable subsets B(Rd) of the
above Euclidean space is generated by sets B(x)≜

{
y ∈ Rd : yi ⩽ xi

}
for x ∈ Rd.

Definition 1.1. A simple point process is a random countable collection of distinct points S : Ω → XN, such
that the distance ∥Sn∥ → ∞ as n → ∞.

Remark 1. For any simple point process S, we have P({Sn = Sm for any n ̸= m}) = 0.

Example 1.2 (Simple point process on the half-line). We can simplify this definition for d = 1. When
X = R+, one can order the points of the process S : Ω → RN

+ to get ordered process S̃ : Ω → RN
+ , such

that S̃n = S(n) is the nth order statistics of S. That is, S(0) ≜ 0, and S(n) ≜ inf
{

Sk > S(n−1) : k ∈ N
}

. such
that S(1) < S(2) < · · · < S(n) < . . . , and limn∈N S(n) = ∞. We will call this an arrival process. The Borel
measurable sets for R+ are generated by the collection of half-open intervals {(0, t] : t ∈ R+}.

Point processes can model many interesting physical processes.

1. Arrivals at classrooms, banks, hospital, supermarket, traffic intersections, airports etc.

2. Location of nodes in a network, such as cellular networks, sensor networks, etc.

Definition 1.3. Corresponding to a point process S : Ω → XN, we denote the number of points in a set
A ∈ B(X) by

N(A) = ∑
n∈N

1{Sn∈A}, where we have N(∅) = 0.

The resulting process N : Ω → Z+
B(X) is called a counting process for the point process S : Ω → XN.

Definition 1.4. A counting process is simple if the underlying point process is simple.

Remark 2. For a simple counting process N, we have N({x})⩽ 1 almost surely for all x ∈ X.

Remark 3. Let N : Ω → Z+
B(X) be the counting process for the point process S : Ω → XN.

i Note that the point process S and the counting process N carry the same information.

ii The distribution of point process S is completely characterized by the finite dimensional distributions
(N(A1), . . . , N(Ak) : bounded A1, . . . , Ak ∈ B(X)) for some finite k ∈ N.
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Example 1.5 (Simple point process on the half-line). The number of points in the half-open interval
(0, t] is denoted by

N(t)≜ N((0, t]) = ∑
n∈N

1{Sn∈(0,t]}.

Since the Borel measurable sets B(R+) are generated by half-open intervals {(0, t] : t ∈ R+}, we denote
the counting process by N : Ω → Z+

R+ , where N(t) = N((0, t]). For s < t, the number of points in
interval (s, t] is N((s, t]) = N((0, t])− N((0, s]) = N(t)− N(s).

Theorem 1.6 (Rényi). Distribution of a simple point process S : Ω → XN on a locally compact second countable
space X is completely determined by void probabilities (P{N(A) = 0} : A ∈ B(X)).

Proof. It suffices to show that the finite dimensional distributions of S on locally compact sets are character-
ized by void probabilities.

Step 1: We will show this by induction on the number of points k in a bounded set A ∈B. Let A1, . . . , Ak, B ∈
B(X) locally compact, then we will show that uk ≜ P(∩k

i=1 {N(Ai) > 0} ∩ {N(B) = 0}) can be com-
puted from void probabilities. From k = 1, we have

P{N(A1) > 0, N(B) = 0} = P{N(B) = 0} − P{N(B ∪ A1) = 0} .

The induction can be proved by the recursive relation

uk = P(∩k−1
i=1 {N(Ai) > 0} ∩ {N(B) = 0})− P(∩k

i=1 {N(Ai) > 0} ∩ {N(Ak ∪ B) = 0}).

Step 2: For any locally compact set B∈B(X), there exists a sequence of nested partitions Bn ≜ (Bn,j : j∈ [kn])
that eventually separates the points in S ∩ B as n → ∞. We define the number of subsets of partition
(Bn,j : j ∈ [kn]) that consist of at least point in S ∩ B, as

Hn(B)≜
kn

∑
j=1

1{N(Bn,j)>0},

where Hn(B) ↑ N(B) almost surely.

Step 3: We now show that for all locally compact sets B1, . . . , Bk ∈ B(X) and j1, . . . , jk ∈ N, the probability
P(∩k

i=1 {Hn(Bi) = ji}) can be expressed in terms of void probabilities. We observe that

P{Hn(B) = j} = ∑
T⊆[kn ]:|T|=j

P(∩j∈T
{

N(Bn,j) > 0
}
∩
{

N(∪j/∈T Bn,j) = 0
}
).

This can be expressed in terms of void probabilities by Step 1.

Step 4: For a simple point process, we have the following almost sure limit

lim
n

∩k
i=1 {Hn(Bi) = ji} = ∩k

i=1 {N(Bi) = ji} .

The result follows from the continuity of probability.

Definition 1.7. A non-negative integer valued random variable N : Ω → Z+ is called Poisson if for some
constant λ > 0, we have

P{N = n} = e−λ λn

n!
.

Remark 4. It is easy to check that EN = Var[N] = λ. Furthermore, the moment generating function MN(t) =
EetN = eλ(et−1) exists for all t ∈ R.
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Corollary 1.8. A simple counting process N : Ω → Z
B(X)
+ has Poisson marginal distribution if and only if void

probabilities are exponential.

Proof. From Rényi’s theorem, finite dimensional distribution of counting process of simple point processes
is determined by void probabilities. It is clear that if marginal distribution is Poisson, then the void proba-
bility P{N(A) = 0} = e−Λ(A) is exponential.

From the fact that void probabilities are exponentially distributed, we will show that for any finite,
bounded, and disjoint sets B1, . . . , Bk ∈ B(X)), we have

P(∩k
i=1 {N(Bi) = 0}) = e−Λ(∪k

i=1Bi) =
k

∏
i=1

e−Λ(Bi) =
k

∏
i=1

P{N(Bi) = 0} .

We further observe that Hn(B) = ∑kn
j=11{N(Bn,j)>0} is the sum of kn independent Bernoulli random variables

with success probability 1 − e−Λ(Bn,j). Therefore,

P{Hn(B) = m} = ∑
T∈[kn ]:|T|=m

∏
j∈T

(1 − e−Λ(Bn,j))∏
j/∈T

e−Λ(Bn,j).

Recall that Hn(B) ↑ N(B) as n → ∞ in the proof of Rényi’s Theorem, and limn∈N

∣∣Bn,j
∣∣ = 0. Taking limit

n → ∞ on both sides of the above equation, we get it follows that

P{N(B) = m} = e−Λ(B) ∑
T∈[kn ]:|T|=m

∏
j∈T

Λ(Bn,j) = e−Λ(B) Λ(B)m

m!
.

Definition 1.9. A counting process N : Ω → Z
B(X)
+ has the completely independence property, if for any

collection of finite disjoint and bounded sets A1, . . . , Ak ∈ B(X), the vector (N(A1), . . . , N(Ak)) : Ω → Zk
+ is

independent. That is,

P

(
k⋂

i=1
{N(Ai) = ni}

)
=

k

∏
i=1

P{N(Ai) = ni} , n ∈ Zk
+.

2 Poisson point process

Remark 5. Recall that |A| =
∫

x∈A dx is the volume of the set A ∈ B(Rd) and for any such A, the intensity
measure of this set is scaled volume

Λ(A) =
∫

x∈A
λ(x)dx,

for the intensity density λ : Rd → R+. If the intensity density λ(x) = λ for all x ∈ Rd, then Λ(A) = λ |A|. In
particular for partition A1, . . . , Ak for a set A, we have Λ(A) = ∑k

i=1 Λ(Ai).

Definition 2.1. A simple point process S : Ω → XN is Poisson point process, if the associated counting
process N : Ω → Z

B(X)
+ has complete independence property and the marginal distributions are Poisson.

Definition 2.2. The intensity measure Λ : B(X) → R+ of Poisson process S is defined by Λ(A) ≜ EN(A)
for all bounded A ∈ B(X).

Remark 6. That is, for a Poisson process with intensity measure Λ, k ∈ Z+, and bounded mutually disjoint
sets A1, . . . , Ak ∈ B(X), we have

P
(
∩k

i=1 {N(Ai) = ni}
)
=

k

∏
i=1

(
e−Λ(Ai)

Λ(Ai)
ni

ni!

)
, n ∈ Zk

+.

Definition 2.3. If the intensity measure Λ of a Poisson process S satisfies Λ(A) = λ |A| for all bounded
A ∈ B(X), then we call S a homogeneous Poisson point process and λ is its intensity.
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3 Equivalent characterizations

Theorem 3.1 (Equivalences). Following are equivalent for a simple counting process N : Ω → Z+
B(X).

i Process N is Poisson with locally finite intensity measure Λ.

ii For each bounded A ∈ B(X), we have P{N(A) = 0} = e−Λ(A).

iii For each bounded A ∈ B(X), the number of points N(A) is a Poisson with parameter Λ(A).

iv Process N has the completely independence property, and EN(A) = Λ(A).

Proof. We will show that i =⇒ ii =⇒ iii =⇒ iv =⇒ i .

i =⇒ ii It follows from the definition of Poisson point processes and definition of Poisson random vari-
ables.

ii =⇒ iii From Corollary 1.8, we know that if void probabilities are exponential, then the marginal distri-
butions are Poisson.

iii =⇒ iv We will show this in two steps.

Mean: Since the distribution of random variable N(A) is Poisson, it has mean EN(A) = Λ(A).

CIP: For disjoint and bounded A1, . . . , Ak ∈ B and A = ∪k
i=1 Ai, we have N(A) = N(A1) + . . . N(A1).

Taking expectations on both sides, and from the linearity of expectation, we get

Λ(A) = Λ(A1) + · · ·+ Λ(Ak).

From the number of partitions n1 + · · ·+ nk = n, we can write

P{N(A) = n} = ∑
n1+···+nk=n

P{N(A1) = n1, . . . , N(Ak) = nk} .

Using the definition of Poisson distribution, we can write the LHS of the above equation as

P{N(A) = n} = e−Λ(A) Λ(A)n

n!
=

k

∏
i=1

e−Λ(Ai)
(∑k

i=1 Λ(Ai))
n

n!
.

Since the expansion of (a1 + · · ·+ ak)
n = ∑n1+···+nk=n (

n
n1,...,nk

)∏k
i=1 ani

i , we get

P{N(A) = n}= 1
n! ∑

n1+···+nk=n

(
n

n1, . . . ,nk

) k

∏
i=1

e−Λ(Ai)Λ(Ai))
ni = ∑

n1+···+nk=n

(
k

∏
i=1

e−Λ(Ai)
Λ(Ai))

ni

ni!

)
.

Equating each term in the summation, we get

P{N(A1) = n1, . . . , N(Ak) = nk} =
k

∏
i=1

P{N(Ai) = ni} .

iv =⇒ i Since void probabilities describe the entire distribution, it suffices to show that P{N(A) = 0} =

e−Λ(A) for all bounded A ∈ B.

Corollary 3.2 (Poisson process on the half-line). A random process N : Ω → Z
R+
+ indexed by time t ∈ Z+ is

the counting process associated with a one-dimensional Poisson process S : Ω → RN
+ having intensity measure Λ iff

(a) Starting with N(0) = 0, the process N(t) takes a non-negative integer value for all t ∈ R+;

(b) the increment N(t + s)− N(t) is surely nonnegative for any s ∈ R+;
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(c) the increments N(t1), N(t2)− N(t1), . . . , N(tn)− N(tn−1) are independent for any 0 < t1 < t2 < · · ·< tn−1 <
tn;

(d) the increment N(t + s)− N(t) is distributed as Poisson random variable with parameter Λ((t, t + s]).

The Poisson process is homogeneous with intensity λ, iff in addition to conditions (a), (b), (c), the distribution of the
increment N(t + s)− N(t) depends on the value s ∈ R+ but is independent of t ∈ R+. That, is the increments are
stationary.

Proof. We have already seen that definition of Poisson processes implies all four conditions. Conditions (a)
and (b) imply that N is a simple counting process on the half-line, condition (c) is the complete indepen-
dence property of the point process, and condition (d) provides the intensity measure. The result follows
from the equivalence iv in Theorem 3.1.
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