Lecture-25: Poisson processes: Conditional distribution

1 Joint conditional distribution of points in a finite window

Let $X=\mathbb{R}^{d}$ be a d-dimensional Euclidean space, and $S: \Omega \rightarrow X^{\mathbb{N}}$ be a Poisson point process with intensity measure $\Lambda: \mathcal{B}(X) \rightarrow \mathbb{R}_{+}$and associated counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathcal{B}(X)}$.

Remark 1. Since S is a simple point process, each point S_{n} is unique. Therefore, we can identify S as a random set of points in X and $S \cap A$ is the random set of points in A. It follows that $\{N(A)=n\}=$ $\{|S \cap A|=n\}$.
Remark 2. Let $\left(A_{1}, \ldots, A_{k}\right) \in \mathcal{B}(X)^{k}$ be disjoint bounded subsets such that $A=\cup_{i=1}^{k} A_{i} \in \mathcal{B}(X)$. From the disjointness of A_{i}, we have

$$
N(A)=\sum_{n \in \mathbb{N}} \mathbb{1}_{\cup_{i=1}^{k} A_{i}}\left(S_{n}\right)=\sum_{n \in \mathbb{N}} \sum_{i=1}^{k} \mathbb{1}_{A_{i}}\left(S_{n}\right)=\sum_{i=1}^{k} \sum_{n \in \mathbb{N}} \mathbb{1}_{A_{i}}\left(S_{n}\right)=\sum_{i=1}^{k} N\left(A_{i}\right) .
$$

The result follows from the linearity of expectations, such that $\Lambda(A)=\mathbb{E} N(A)=\sum_{i=1}^{k} \mathbb{E} N\left(A_{i}\right)=$ $\sum_{i=1}^{k} \Lambda\left(A_{i}\right)$.

Proposition 1.1. Let $k \in \mathbb{N}$ be any positive integer. For a Poisson point process $S: \Omega \rightarrow X^{\mathbb{N}}$ with intensity measure $\Lambda: \mathcal{B}(X) \rightarrow \mathbb{R}_{+}$, consider a bounded subset $A \in \mathcal{B}(X)$ and subsets $\left(A_{1}, \ldots, A_{k}\right) \in \mathcal{B}(X)^{k}$ that partition A. Let $n_{1}, \ldots, n_{k} \in \mathbb{Z}_{+}$such that $n_{1}+\cdots+n_{k}=n$, then

$$
\begin{equation*}
P\left(\left\{N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k}\right\} \mid\{N(A)=n\}\right)=\binom{n}{n_{1}, \ldots, n_{k}} \prod_{i=1}^{k}\left(\frac{\Lambda\left(A_{i}\right)}{\Lambda(A)}\right)^{n_{i}} . \tag{1}
\end{equation*}
$$

Proof. From the definition of conditional probability, we can write the conditional probability on LHS as the ratio

$$
\frac{P\left(\left\{N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k}\right\} \cap\{N(A)=n\}\right)}{P(\{N(A)=n\})} .
$$

Since $\cap_{i=1}^{k}\left\{N\left(A_{i}\right)=n_{i}\right\} \subseteq\{N(A)=n\}$, we can rewrite the RHS of the above equation as

$$
\frac{P\left(\left\{N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k}\right\}\right)}{P(\{N(A)=n\})} .
$$

From the definition of joint distribution of $\left(N\left(A_{1}\right), \ldots, N\left(A_{k}\right)\right)$ for disjoint bounded $A_{1}, \ldots, A_{k} \in \mathcal{B}(X)$, we can rewrite the RHS of the above equation as

$$
\frac{P\left(\left\{N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k}\right\}\right)}{P(\{N(A)=n\})}=\frac{\prod_{i=1}^{k} e^{-\Lambda\left(A_{i}\right) \frac{\Lambda\left(A_{i}\right)^{n_{i}}}{n_{i}!}}}{e^{-\Lambda(A)} \frac{\Lambda(A)^{n}}{n!}}=\binom{n}{n_{1}, \ldots, n_{k}} \prod_{i=1}^{k}\left(\frac{\Lambda\left(A_{i}\right)}{\Lambda(A)}\right)^{n_{i}} .
$$

The result follows from the fact that the intensity measure add over disjoint sets, i.e. $\Lambda(A)=\sum_{i=1}^{k} \Lambda\left(A_{i}\right)$.

Remark 3. Consider a Poisson point process $S: \Omega \rightarrow X^{\mathbb{N}}$ with intensity measure $\Lambda: \mathcal{B}(X) \rightarrow \mathbb{R}_{+}$and counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathcal{B}(X)}$. Let $\left(A_{1}, \ldots, A_{k}\right) \in \mathcal{B}(X)^{k}$ be disjoint bounded subsets such that $A=$ $\cup_{i=1}^{k} A_{i} \in \mathcal{B}(X)$.
i_ Defining $p_{i} \triangleq \frac{\Lambda\left(A_{i}\right)}{\Lambda(A)}$, we see that $\left(p_{1}, \ldots, p_{k}\right)$ is a probability distribution. We also observe that

$$
p_{i}=P\left(\left\{N\left(A_{i}\right)=1\right\} \mid\{N(A)=1\}\right)=P\left(\left\{\left|S \cap A_{i}\right|=1\right\} \mid\{|S \cap A|=1\}\right)
$$

When $N(A)=1$, we can call the point of S in A as S_{1} without any loss of generality. That is, if we call $\left\{S_{1}\right\}=S \cap A$, then we have

$$
p_{i}=P\left(\left\{S_{1} \in A_{i}\right\} \mid\left\{S_{1} \in A\right\}\right)
$$

Similarly, when $N(A)=n_{i}$, we call the points of S in A as $S_{1}, \ldots, S_{n_{i}}$ and denote $S \cap A=$ $\left\{S_{1}, \ldots, S_{n_{i}}\right\}$. For this case, we observe

$$
\begin{aligned}
& P\left(\left\{N\left(A_{i}\right)=n_{i}\right\} \mid\left\{N(A)=n_{i}\right\}\right)=P\left(\left\{\left|S \cap A_{i}\right|=n_{i}\right\} \mid\left\{|S \cap A|=n_{i}\right\}\right)=p_{i}^{n_{i}} \\
& =P\left(\cap_{j=1}^{n_{i}}\left\{S_{j} \in A_{i}\right\} \mid\left\{\left\{S_{1}, \ldots, S_{n_{i}}\right\}=S \cap A\right\}\right)=\prod_{j=1}^{n_{i}} P\left(\left\{S_{j} \in A_{i}\right\} \mid\left\{S_{j} \in A\right\}\right)
\end{aligned}
$$

ii_ We can rewrite the Equation (1) as a multinomial distribution, where

$$
P\left(\left\{N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k}\right\} \mid\{N(A)=n\}\right)=\binom{n}{n_{1}, \ldots, n_{k}} p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}
$$

iii_ We define $\mathcal{P}_{k}\left(E, n_{1}, \ldots, n_{k}\right)$ to be the collection of all k-partitions $\left(E_{1}, \ldots, E_{k}\right)$ of any finite set $E \subseteq \mathbb{N}$ such that $\left|E_{i}\right|=n_{i}$ for $i \in[k]$. Then, the multinomial coefficient accounts for number of partitions of n points into sets with n_{1}, \ldots, n_{k} points. That is,

$$
\binom{n}{n_{1}, \ldots, n_{k}}=\left|\mathcal{P}_{k}\left([n], n_{1}, \ldots, n_{k}\right)\right|
$$

iv_ Recall that the event $\left\{N\left(A_{i}\right)=n_{i}\right\}=\left\{\left|S \cap A_{i}\right|=n_{i}\right\}$. Hence, we can write

$$
\begin{aligned}
P\left(\cap_{i=1}^{k}\left\{\left|S \cap A_{i}\right|=n_{i}\right\} \mid\{|S \cap A|=n\}\right) & =\binom{n}{n_{1}, \ldots, n_{k}} p_{1}^{n_{1}} \ldots p_{k}^{n_{k}} \\
& =\sum_{\left(E_{1}, \ldots, E_{k}\right) \in \mathcal{P}_{k}\left(S \cap A, n_{1}, \ldots, n_{k}\right)} \prod_{i=1}^{k} \prod_{S_{j} \in E_{i}} P\left(\left\{S_{j} \in A_{i}\right\} \mid\left\{S_{j} \in A\right\}\right)
\end{aligned}
$$

v_ When $N(A)=n$, we denote $S \cap A$ by $E=\left\{S_{1}, \ldots, S_{n}\right\}$ without any loss of generality. We further observe that when $N\left(A_{i}\right)=n_{i}$ for all $i \in[k]$, then $\left(S \cap A_{1}, \ldots, S \cap A_{k}\right) \in \mathcal{P}_{k}\left(S \cap A, n_{1}, \ldots, n_{k}\right)$. Therefore, we can re-write the event

$$
\cap_{i=1}^{k}\left\{N\left(A_{i}\right)=n_{i}\right\}=\cap_{i=1}^{k}\left\{\left|S \cap A_{i}\right|=n_{i}\right\}=\cup_{\left(E_{1}, \ldots, E_{k}\right) \in \mathcal{P}_{k}\left(S \cap A, n_{1}, \ldots, n_{k}\right)}\left(\cap_{i=1}^{k}\left\{S \cap A_{i}=E_{i}\right\}\right)
$$

That is, we can write the conditional probability

$$
\begin{aligned}
P\left(\cap_{i=1}^{k}\left\{N\left(A_{i}\right)=n_{i}\right\} \mid\{N(A)=n\}\right) & =\sum_{\left(E_{1}, \ldots, E_{k}\right) \in \mathcal{P}_{k}\left(S \cap A, n_{1}, \ldots, n_{k}\right)} P\left(\cap_{i=1}^{k}\left\{S \cap A_{i}=E_{i}\right\} \mid\{S \cap A=E\}\right) \\
& =\sum_{\left(E_{1}, \ldots, E_{k}\right) \in \mathcal{P}_{k}\left(S \cap A, n_{1}, \ldots, n_{k}\right)} P\left(\cap_{i=1}^{k} \cap \cap_{S_{j} \in E_{i}}\left\{S_{j} \in A_{i}\right\} \mid\{S \cap A=E\}\right)
\end{aligned}
$$

vi_ Equating the RHS of the above equation term-wise, we obtain that conditioned on each of these points falling inside the window A, the conditional probability of each point falling in partition A_{i} is independent of all other points and given by p_{i}. That is, we have

$$
P\left(\cap_{i=1}^{k} \cap_{S_{j} \in E_{i}}\left\{S_{j} \in A_{i}\right\} \mid\{S \cap A=E\}\right)=\prod_{i=1}^{k} \prod_{S_{j} \in E_{i}} P\left(\left\{S_{j} \in A_{i}\right\} \mid\left\{S_{j} \in A\right\}\right)=\prod_{i=1}^{k} p_{i}^{n_{i}}=\prod_{i=1}^{k}\left(\frac{\Lambda\left(A_{i}\right)}{\Lambda(A)}\right)^{n_{i}} .
$$

It means that given n points in the window A, the location of these points are independently and identically distributed in A according to the distribution $\frac{\Lambda(\cdot)}{\Lambda(A)}$.
vii_ If the Poisson process is homogeneous, the distribution is uniform over the window A.
viii_ For a Poisson process with intensity measure Λ and any bounded set $A \in \mathcal{B}$, we have $N(A)$ a Poisson random variable with parameter $\Lambda(A)$. Given $N(A)$, the location of all the points in $S \cap A$ are i.i.d. with density $\frac{\lambda(x)}{\Lambda(A)}$ for all $x \in A$.

Remark 4 (Simulating a homogeneous Poisson point process). If we are interested in simulating a two dimensional homogeneous Poisson point process with density λ in a uniform square $A=[0,1] \times[0,1]$. Then, we first generate the random variable $N(A): \Omega \rightarrow \mathbb{Z}_{+}$that takes value n with probability $e^{-\lambda} \frac{\lambda^{n}}{n!}$. Next, for each of the $N(A)=n$ points, we generate the location $\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{2}$ uniformly at random. That is, $X: \Omega \rightarrow[0,1]^{n}$ and $Y: \Omega \rightarrow[0,1]^{n}$ are independent i.i.d. uniform sequences.

Corollary 1.2. For a homogeneous Poisson point process on the half-line with ordered set of points $\left(S_{(n)} \in \mathbb{R}_{+}: n \in\right.$ $\mathbb{N})$, we can write the conditional density of ordered points $\left(S_{(1)}, \ldots, S_{(k)}\right)$ given the event $\{N(t)=k\}$ as ordered statistics of i.i.d. uniformly distributed random variables. Specifically, we have

$$
\left.f_{S_{(1), \ldots, S_{(k)}}} \mid N(t)=k\right) ~\left(t_{1}, \ldots, t_{k}\right)=k!\frac{\mathbb{1}_{\left\{0<t_{1} \leqslant \ldots \leqslant t_{k} \leqslant t\right\}}}{t^{k}} .
$$

Proof. Given $\{N(t)=k\}$, we can denote the points of the Poisson process in $(0, t]$ by S_{1}, \ldots, S_{k}. From the above remark, we know that S_{1}, \ldots, S_{k} are i.i.d. uniform in $(0, t]$, conditioned on the number of points $N(t)=$ k. Hence, we can write
$F_{S_{1}, \ldots, S_{k} \mid N(t)=k}\left(t_{1}, \ldots, t_{k}\right)=P\left(\cap_{i=1}^{k}\left\{S_{i} \in\left(0, t_{i}\right]\right\} \mid\{N(t)=k\}\right)=\prod_{i=1}^{k} P\left(\left\{S_{i} \in\left(0, t_{i}\right]\right\} \mid\left\{S_{i} \in(0, t]\right\}\right)=\prod_{i=1}^{k} \frac{t_{i}}{t} \mathbb{1}_{\left\{0<t_{i} \leqslant t\right\}}$.
Therefore, for $0 \leqslant t_{1}<\cdots<t_{k}<1$ and $\left(h_{1}, \ldots, h_{k}\right)$ sufficiently small, we have

$$
P\left(\cap_{i=1}^{k}\left\{S_{i} \in\left(t_{i}, t_{i}+h_{i}\right]\right\}\right)=\prod_{i=1}^{k} \frac{h_{i}}{t} .
$$

Since $\left(S_{1}, \ldots, S_{k}\right)$ are conditionally independent given $S \cap A=\left\{S_{1}, \ldots, S_{k}\right\}$, it follows that any permutation $\sigma:[k] \rightarrow[k]$, the conditional joint distribution of $\left(S_{\sigma(1)}, \ldots, S_{\sigma(k)}\right)$ is identical to that of $\left(S_{1}, \ldots, S_{k}\right)$ given $S \cap A=\left\{S_{1}, \ldots, S_{k}\right\}$. Further, we observe that the order statistics of $\left(S_{\sigma(1)}, \ldots, S_{\sigma(k)}\right)$ is identical to that of $\left(S_{1}, \ldots, S_{k}\right)$. Therefore, we can write the following equality for the events

$$
\cap_{i=1}^{k}\left\{S_{(i)} \in\left(t_{i}, t_{i}+h_{i}\right]\right\}=\cup_{\sigma:[k] \rightarrow[k] \text { permutation }} \cap_{i=1}^{k}\left\{S_{\sigma(i)} \in\left(t_{i}, t_{i}+h_{i}\right]\right\}
$$

The result follows since the number of permutations $\sigma:[k] \rightarrow[k]$ is $k!$.

