Lecture-25: Poisson processes: Conditional distribution

1 Joint conditional distribution of points in a finite window

Let $\mathcal{X} = \mathbb{R}^d$ be a d-dimensional Euclidean space, and $S : \Omega \to \mathcal{X}^\mathbb{N}$ be a Poisson point process with intensity measure $\Lambda : \mathcal{B}(\mathcal{X}) \to \mathbb{R}_+$ and associated counting process $N : \Omega \to \mathbb{Z}_+^{\mathcal{B}(\mathcal{X})}$.

Remark 1. Since S is a simple point process, each point S_n is unique. Therefore, we can identify S as a random set of points in X and $S \cap A$ is the random set of points in A. It follows that $\{N(A) = n\} = \{|S \cap A| = n\}$.

Remark 2. Let $(A_1,...,A_k) \in \mathcal{B}(\mathfrak{X})^k$ be disjoint bounded subsets such that $A = \bigcup_{i=1}^k A_i \in \mathcal{B}(\mathfrak{X})$. From the disjointness of A_i , we have

$$N(A) = \sum_{n \in \mathbb{N}} \mathbb{1}_{\bigcup_{i=1}^k A_i}(S_n) = \sum_{n \in \mathbb{N}} \sum_{i=1}^k \mathbb{1}_{A_i}(S_n) = \sum_{i=1}^k \sum_{n \in \mathbb{N}} \mathbb{1}_{A_i}(S_n) = \sum_{i=1}^k N(A_i).$$

The result follows from the linearity of expectations, such that $\Lambda(A) = \mathbb{E}N(A) = \sum_{i=1}^k \mathbb{E}N(A_i) = \sum_{i=1}^k \Lambda(A_i)$.

Proposition 1.1. Let $k \in \mathbb{N}$ be any positive integer. For a Poisson point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$ with intensity measure $\Lambda : \mathfrak{B}(\mathfrak{X}) \to \mathbb{R}_+$, consider a bounded subset $A \in \mathfrak{B}(\mathfrak{X})$ and subsets $(A_1, \ldots, A_k) \in \mathfrak{B}(\mathfrak{X})^k$ that partition A. Let $n_1, \ldots, n_k \in \mathbb{Z}_+$ such that $n_1 + \cdots + n_k = n$, then

$$P(\{N(A_1) = n_1, \dots, N(A_k) = n_k\} \mid \{N(A) = n\}) = \binom{n}{n_1, \dots, n_k} \prod_{i=1}^k \left(\frac{\Lambda(A_i)}{\Lambda(A)}\right)^{n_i}.$$
 (1)

Proof. From the definition of conditional probability, we can write the conditional probability on LHS as the ratio

$$\frac{P(\{N(A_1) = n_1, \dots, N(A_k) = n_k\} \cap \{N(A) = n\})}{P(\{N(A) = n\})}.$$

Since $\bigcap_{i=1}^k \{N(A_i) = n_i\} \subseteq \{N(A) = n\}$, we can rewrite the RHS of the above equation as

$$\frac{P(\{N(A_1) = n_1, \dots, N(A_k) = n_k\})}{P(\{N(A) = n\})}.$$

From the definition of joint distribution of $(N(A_1),...,N(A_k))$ for disjoint bounded $A_1,...,A_k \in \mathcal{B}(\mathcal{X})$, we can rewrite the RHS of the above equation as

$$\frac{P(\{N(A_1) = n_1, \dots, N(A_k) = n_k\})}{P(\{N(A) = n_k\})} = \frac{\prod_{i=1}^k e^{-\Lambda(A_i)} \frac{\Lambda(A_i)^{n_i}}{n_i!}}{e^{-\Lambda(A)} \frac{\Lambda(A)^n}{n_i!}} = \binom{n}{n_1, \dots, n_k} \prod_{i=1}^k \left(\frac{\Lambda(A_i)}{\Lambda(A)}\right)^{n_i}.$$

The result follows from the fact that the intensity measure add over disjoint sets, i.e. $\Lambda(A) = \sum_{i=1}^k \Lambda(A_i)$.

Remark 3. Consider a Poisson point process $S: \Omega \to \mathcal{X}^{\mathbb{N}}$ with intensity measure $\Lambda: \mathcal{B}(\mathcal{X}) \to \mathbb{R}_+$ and counting process $N: \Omega \to \mathbb{Z}_+^{\mathcal{B}(\mathcal{X})}$. Let $(A_1, \ldots, A_k) \in \mathcal{B}(\mathcal{X})^k$ be disjoint bounded subsets such that $A = \bigcup_{i=1}^k A_i \in \mathcal{B}(\mathcal{X})$.

i_ Defining $p_i \triangleq \frac{\Lambda(A_i)}{\Lambda(A)}$, we see that (p_1, \dots, p_k) is a probability distribution. We also observe that

$$p_i = P(\{N(A_i) = 1\} \mid \{N(A) = 1\}) = P(\{|S \cap A_i| = 1\} \mid \{|S \cap A| = 1\}).$$

When N(A) = 1, we can call the point of S in A as S_1 without any loss of generality. That is, if we call $\{S_1\} = S \cap A$, then we have

$$p_i = P(\{S_1 \in A_i\} \mid \{S_1 \in A\}).$$

Similarly, when $N(A) = n_i$, we call the points of S in A as $S_1, ..., S_{n_i}$ and denote $S \cap A = \{S_1, ..., S_{n_i}\}$. For this case, we observe

$$P(\{N(A_i) = n_i\} \mid \{N(A) = n_i\}) = P(\{|S \cap A_i| = n_i\} \mid \{|S \cap A| = n_i\}) = p_i^{n_i}$$

= $P(\bigcap_{j=1}^{n_i} \{S_j \in A_i\} \mid \{\{S_1, \dots, S_{n_i}\} = S \cap A\}) = \prod_{i=1}^{n_i} P(\{S_j \in A_i\} \mid \{S_j \in A\}).$

ii_ We can rewrite the Equation (1) as a multinomial distribution, where

$$P(\{N(A_1) = n_1, ..., N(A_k) = n_k\} \mid \{N(A) = n\}) = \binom{n}{n_1, ..., n_k} p_1^{n_1} ... p_k^{n_k}.$$

iii_ We define $\mathcal{P}_k(E, n_1, ..., n_k)$ to be the collection of all k-partitions $(E_1, ..., E_k)$ of any finite set $E \subseteq \mathbb{N}$ such that $|E_i| = n_i$ for $i \in [k]$. Then, the multinomial coefficient accounts for number of partitions of n points into sets with $n_1, ..., n_k$ points. That is,

$$\binom{n}{n_1,\ldots,n_k} = |\mathcal{P}_k([n],n_1,\ldots,n_k)|.$$

iv_ Recall that the event $\{N(A_i) = n_i\} = \{|S \cap A_i| = n_i\}$. Hence, we can write

$$P(\bigcap_{i=1}^{k} \{ | S \cap A_i| = n_i \} \mid \{ | S \cap A| = n \}) = \binom{n}{n_1, \dots, n_k} p_1^{n_1} \dots p_k^{n_k}$$

$$= \sum_{(E_1, \dots, E_k) \in \mathcal{P}_k(S \cap A, n_1, \dots, n_k)} \prod_{i=1}^k \prod_{S_j \in E_i} P(\{ S_j \in A_i \} \mid \{ S_j \in A \}).$$

v_ When N(A) = n, we denote $S \cap A$ by $E = \{S_1, ..., S_n\}$ without any loss of generality. We further observe that when $N(A_i) = n_i$ for all $i \in [k]$, then $(S \cap A_1, ..., S \cap A_k) \in \mathcal{P}_k(S \cap A, n_1, ..., n_k)$. Therefore, we can re-write the event

$$\bigcap_{i=1}^{k} \{ N(A_i) = n_i \} = \bigcap_{i=1}^{k} \{ |S \cap A_i| = n_i \} = \bigcup_{(E_1, \dots, E_k) \in \mathcal{P}_k(S \cap A, n_1, \dots, n_k)} (\bigcap_{i=1}^{k} \{ S \cap A_i = E_i \}).$$

That is, we can write the conditional probability

$$P(\bigcap_{i=1}^{k} \{N(A_i) = n_i\} \mid \{N(A) = n\}) = \sum_{(E_1, \dots, E_k) \in \mathcal{P}_k(S \cap A, n_1, \dots, n_k)} P(\bigcap_{i=1}^{k} \{S \cap A_i = E_i\} \mid \{S \cap A = E\})$$

$$= \sum_{(E_1, \dots, E_k) \in \mathcal{P}_k(S \cap A, n_1, \dots, n_k)} P(\bigcap_{i=1}^{k} \bigcap_{S_j \in E_i} \{S_j \in A_i\} \mid \{S \cap A = E\}).$$

vi_ Equating the RHS of the above equation term-wise, we obtain that conditioned on each of these points falling inside the window A, the conditional probability of each point falling in partition A_i is independent of all other points and given by p_i . That is, we have

$$P(\cap_{i=1}^{k} \cap_{S_{j} \in E_{i}} \{S_{j} \in A_{i}\} \mid \{S \cap A = E\}) = \prod_{i=1}^{k} \prod_{S_{i} \in E_{i}} P(\{S_{j} \in A_{i}\} \mid \{S_{j} \in A\}) = \prod_{i=1}^{k} p_{i}^{n_{i}} = \prod_{i=1}^{k} \left(\frac{\Lambda(A_{i})}{\Lambda(A)}\right)^{n_{i}}.$$

It means that given n points in the window A, the location of these points are independently and identically distributed in A according to the distribution $\frac{\Lambda(\cdot)}{\Lambda(A)}$.

- vii_ If the Poisson process is homogeneous, the distribution is uniform over the window A.
- viii_ For a Poisson process with intensity measure Λ and any bounded set $A \in \mathcal{B}$, we have N(A) a Poisson random variable with parameter $\Lambda(A)$. Given N(A), the location of all the points in $S \cap A$ are *i.i.d.* with density $\frac{\lambda(x)}{\Lambda(A)}$ for all $x \in A$.

Remark 4 (Simulating a homogeneous Poisson point process). If we are interested in simulating a two dimensional homogeneous Poisson point process with density λ in a uniform square $A = [0,1] \times [0,1]$. Then, we first generate the random variable $N(A): \Omega \to \mathbb{Z}_+$ that takes value n with probability $e^{-\lambda} \frac{\lambda^n}{n!}$. Next, for each of the N(A) = n points, we generate the location $(X_i, Y_i) \in \mathbb{R}^2$ uniformly at random. That is, $X: \Omega \to [0,1]^n$ and $Y: \Omega \to [0,1]^n$ are independent i.i.d. uniform sequences.

Corollary 1.2. For a homogeneous Poisson point process on the half-line with ordered set of points $(S_{(n)} \in \mathbb{R}_+ : n \in \mathbb{N})$, we can write the conditional density of ordered points $(S_{(1)}, \ldots, S_{(k)})$ given the event $\{N(t) = k\}$ as ordered statistics of i.i.d. uniformly distributed random variables. Specifically, we have

$$f_{S_{(1)},...,S_{(k)} \mid N(t)=k}(t_1,...,t_k) = k! \frac{\mathbb{1}_{\{0 < t_1 \le ... \le t_k \le t\}}}{t^k}.$$

Proof. Given $\{N(t) = k\}$, we can denote the points of the Poisson process in (0,t] by S_1, \ldots, S_k . From the above remark, we know that S_1, \ldots, S_k are i.i.d. uniform in (0,t], conditioned on the number of points N(t) = k. Hence, we can write

$$F_{S_1,\ldots,S_k \mid N(t)=k}(t_1,\ldots,t_k) = P(\cap_{i=1}^k \{S_i \in (0,t_i]\} \mid \{N(t)=k\}) = \prod_{i=1}^k P(\{S_i \in (0,t_i]\} \mid \{S_i \in (0,t]\}) = \prod_{i=1}^k \frac{t_i}{t} \mathbb{1}_{\{0 < t_i \le t\}}.$$

Therefore, for $0 \le t_1 < \cdots < t_k < 1$ and (h_1, \dots, h_k) sufficiently small, we have

$$P(\cap_{i=1}^{k} \{S_i \in (t_i, t_i + h_i]\}) = \prod_{i=1}^{k} \frac{h_i}{t}.$$

Since $(S_1,...,S_k)$ are conditionally independent given $S \cap A = \{S_1,...,S_k\}$, it follows that any permutation $\sigma: [k] \to [k]$, the conditional joint distribution of $(S_{\sigma(1)},...,S_{\sigma(k)})$ is identical to that of $(S_1,...,S_k)$ given $S \cap A = \{S_1,...,S_k\}$. Further, we observe that the order statistics of $(S_{\sigma(1)},...,S_{\sigma(k)})$ is identical to that of $(S_1,...,S_k)$. Therefore, we can write the following equality for the events

$$\bigcap_{i=1}^{k} \left\{ S_{(i)} \in (t_i, t_i + h_i) \right\} = \bigcup_{\sigma: [k] \to [k] \text{ permutation }} \bigcap_{i=1}^{k} \left\{ S_{\sigma(i)} \in (t_i, t_i + h_i) \right\}.$$

The result follows since the number of permutations $\sigma : [k] \to [k]$ is k!.