
Lecture-25: Poisson processes: Conditional distribution

1 Joint conditional distribution of points in a finite window

Let X= Rd be a d-dimensional Euclidean space, and S : Ω → XN be a Poisson point process with intensity
measure Λ : B(X)→ R+ and associated counting process N : Ω → Z

B(X)
+ .

Remark 1. Since S is a simple point process, each point Sn is unique. Therefore, we can identify S as
a random set of points in X and S ∩ A is the random set of points in A. It follows that {N(A) = n} =
{|S ∩ A| = n}.

Remark 2. Let (A1, . . . , Ak) ∈ B(X)k be disjoint bounded subsets such that A = ∪k
i=1 Ai ∈ B(X). From

the disjointness of Ai, we have

N(A) = ∑
n∈N

1∪k
i=1 Ai

(Sn) = ∑
n∈N

k

∑
i=1

1Ai (Sn) =
k

∑
i=1

∑
n∈N

1Ai (Sn) =
k

∑
i=1

N(Ai).

The result follows from the linearity of expectations, such that Λ(A) = EN(A) = ∑k
i=1 EN(Ai) =

∑k
i=1 Λ(Ai).

Proposition 1.1. Let k ∈ N be any positive integer. For a Poisson point process S : Ω → XN with intensity measure
Λ : B(X) → R+, consider a bounded subset A ∈ B(X) and subsets (A1, . . . , Ak) ∈ B(X)k that partition A. Let
n1, . . . ,nk ∈ Z+ such that n1 + · · ·+ nk = n, then

P({N(A1) = n1, . . . , N(Ak) = nk}
∣∣ {N(A) = n}) =

(
n

n1, . . . ,nk

) k

∏
i=1

(
Λ(Ai)

Λ(A)

)ni

. (1)

Proof. From the definition of conditional probability, we can write the conditional probability on LHS as
the ratio

P({N(A1) = n1, . . . , N(Ak) = nk} ∩ {N(A) = n})
P({N(A) = n}) .

Since ∩k
i=1 {N(Ai) = ni} ⊆ {N(A) = n}, we can rewrite the RHS of the above equation as

P({N(A1) = n1, . . . , N(Ak) = nk})
P({N(A) = n}) .

From the definition of joint distribution of (N(A1), . . . , N(Ak)) for disjoint bounded A1, . . . , Ak ∈ B(X), we
can rewrite the RHS of the above equation as

P({N(A1) = n1, . . . , N(Ak) = nk})
P({N(A) = n}) =

∏k
i=1 e−Λ(Ai) Λ(Ai)

ni

ni !

e−Λ(A) Λ(A)n

n!

=

(
n

n1, . . . ,nk

) k

∏
i=1

(
Λ(Ai)

Λ(A)

)ni

.

The result follows from the fact that the intensity measure add over disjoint sets, i.e. Λ(A) = ∑k
i=1 Λ(Ai).
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Remark 3. Consider a Poisson point process S : Ω → XN with intensity measure Λ : B(X) → R+ and
counting process N : Ω → Z

B(X)
+ . Let (A1, . . . , Ak) ∈ B(X)k be disjoint bounded subsets such that A =

∪k
i=1 Ai ∈ B(X).

i Defining pi ≜
Λ(Ai)
Λ(A)

, we see that (p1, . . . , pk) is a probability distribution. We also observe that

pi = P({N(Ai) = 1}
∣∣ {N(A) = 1}) = P({|S ∩ Ai| = 1}

∣∣ {|S ∩ A| = 1}).

When N(A) = 1, we can call the point of S in A as S1 without any loss of generality. That is, if we
call {S1} = S ∩ A, then we have

pi = P({S1 ∈ Ai}
∣∣ {S1 ∈ A}).

Similarly, when N(A) = ni, we call the points of S in A as S1, . . . ,Sni and denote S ∩ A =
{S1, . . . ,Sni}. For this case, we observe

P({N(Ai) = ni}
∣∣ {N(A) = ni}) = P({|S ∩ Ai| = ni}

∣∣ {|S ∩ A| = ni}) = pni
i

= P(∩ni
j=1

{
Sj ∈ Ai

} ∣∣ {{S1, . . . ,Sni} = S ∩ A}) =
ni

∏
j=1

P(
{

Sj ∈ Ai
} ∣∣ {Sj ∈ A

}
).

ii We can rewrite the Equation (1) as a multinomial distribution, where

P({N(A1) = n1, . . . , N(Ak) = nk}
∣∣ {N(A) = n}) =

(
n

n1, . . . ,nk

)
pn1

1 . . . pnk
k .

iii We define Pk(E,n1, . . . ,nk) to be the collection of all k-partitions (E1, . . . , Ek) of any finite set E ⊆ N

such that |Ei| = ni for i ∈ [k]. Then, the multinomial coefficient accounts for number of partitions
of n points into sets with n1, . . . ,nk points. That is,(

n
n1, . . . ,nk

)
= |Pk([n],n1, . . . ,nk)| .

iv Recall that the event {N(Ai) = ni} = {|S ∩ Ai| = ni}. Hence, we can write

P(∩k
i=1 {|S ∩ Ai| = ni}

∣∣ {|S ∩ A| = n}) =
(

n
n1, . . . ,nk

)
pn1

1 . . . pnk
k

= ∑
(E1,...,Ek)∈Pk(S∩A,n1,...,nk)

k

∏
i=1

∏
Sj∈Ei

P(
{

Sj ∈ Ai
} ∣∣ {Sj ∈ A

}
).

v When N(A) = n, we denote S ∩ A by E = {S1, . . . ,Sn} without any loss of generality. We further
observe that when N(Ai) = ni for all i ∈ [k], then (S ∩ A1, . . . ,S ∩ Ak) ∈ Pk(S ∩ A,n1, . . . ,nk). There-
fore, we can re-write the event

∩k
i=1 {N(Ai) = ni} = ∩k

i=1 {|S ∩ Ai| = ni} = ∪(E1,...,Ek)∈Pk(S∩A,n1,...,nk)
(∩k

i=1 {S ∩ Ai = Ei}).

That is, we can write the conditional probability

P(∩k
i=1 {N(Ai) = ni}

∣∣ {N(A) = n}) = ∑
(E1,...,Ek)∈Pk(S∩A,n1,...,nk)

P(∩k
i=1 {S ∩ Ai = Ei}

∣∣ {S ∩ A = E})

= ∑
(E1,...,Ek)∈Pk(S∩A,n1,...,nk)

P(∩k
i=1 ∩Sj∈Ei

{
Sj ∈ Ai

} ∣∣ {S ∩ A = E}).
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vi Equating the RHS of the above equation term-wise, we obtain that conditioned on each of these
points falling inside the window A, the conditional probability of each point falling in partition Ai
is independent of all other points and given by pi. That is, we have

P(∩k
i=1 ∩Sj∈Ei

{
Sj ∈ Ai

} ∣∣ {S ∩ A = E}) =
k

∏
i=1

∏
Sj∈Ei

P(
{

Sj ∈ Ai
} ∣∣ {Sj ∈ A

}
) =

k

∏
i=1

pni
i =

k

∏
i=1

(
Λ(Ai)

Λ(A)

)ni

.

It means that given n points in the window A, the location of these points are independently and
identically distributed in A according to the distribution Λ(·)

Λ(A)
.

vii If the Poisson process is homogeneous, the distribution is uniform over the window A.

viii For a Poisson process with intensity measure Λ and any bounded set A ∈ B, we have N(A) a
Poisson random variable with parameter Λ(A). Given N(A), the location of all the points in S ∩ A
are i.i.d. with density λ(x)

Λ(A)
for all x ∈ A.

Remark 4 (Simulating a homogeneous Poisson point process). If we are interested in simulating a two
dimensional homogeneous Poisson point process with density λ in a uniform square A = [0,1]× [0,1].
Then, we first generate the random variable N(A) : Ω → Z+ that takes value n with probability e−λ λn

n! .
Next, for each of the N(A) = n points, we generate the location (Xi,Yi) ∈ R2 uniformly at random. That
is, X : Ω → [0,1]n and Y : Ω → [0,1]n are independent i.i.d. uniform sequences.

Corollary 1.2. For a homogeneous Poisson point process on the half-line with ordered set of points (S(n) ∈ R+ : n ∈
N), we can write the conditional density of ordered points (S(1), . . . ,S(k)) given the event {N(t) = k} as ordered
statistics of i.i.d. uniformly distributed random variables. Specifically, we have

f
S(1),...,S(k)

∣∣ N(t)=k
(t1, . . . , tk) = k!

1{0<t1⩽...⩽tk⩽t}
tk .

Proof. Given {N(t) = k}, we can denote the points of the Poisson process in (0, t] by S1, . . . ,Sk. From the
above remark, we know that S1, . . . ,Sk are i.i.d. uniform in (0, t], conditioned on the number of points N(t) =
k. Hence, we can write

F
S1,...,Sk

∣∣ N(t)=k
(t1, . . . , tk) = P(∩k

i=1 {Si ∈ (0, ti]}
∣∣ {N(t) = k}) =

k

∏
i=1

P({Si ∈ (0, ti]}
∣∣ {Si ∈ (0, t]}) =

k

∏
i=1

ti
t
1{0<ti⩽t}.

Therefore, for 0 ⩽ t1 < · · · < tk < 1 and (h1, . . . , hk) sufficiently small, we have

P
(
∩k

i=1 {Si ∈ (ti, ti + hi]}
)
=

k

∏
i=1

hi
t

.

Since (S1, . . . ,Sk) are conditionally independent given S ∩ A = {S1, . . . ,Sk}, it follows that any permutation
σ : [k] → [k], the conditional joint distribution of (Sσ(1), . . . ,Sσ(k)) is identical to that of (S1, . . . ,Sk) given
S ∩ A = {S1, . . . ,Sk}. Further, we observe that the order statistics of (Sσ(1), . . . ,Sσ(k)) is identical to that of
(S1, . . . ,Sk). Therefore, we can write the following equality for the events

∩k
i=1

{
S(i) ∈ (ti, ti + hi]

}
= ∪σ:[k]→[k] permutation ∩k

i=1

{
Sσ(i) ∈ (ti, ti + hi]

}
.

The result follows since the number of permutations σ : [k]→ [k] is k!.
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