Lecture-02: Review of Linear Algebra and Convex Optimization

1 Review of Linear Algebra

1.1 Vector Space

Definition 1.1 (Vector addition). A set V is set to be equipped with vector addition mapping $+: V \times$ $V \rightarrow V$ defined by $+(v, w)=v+w$ for any two elements $v, w \in V$, if this mapping satisfies the following four axioms.

1. Associativity: For all vectors $u, v, w \in V$, we have $u+(v+w)=(u+v)+w$.
2. Commutativity: For all vectors $u, v \in V$, we have $u+v=v+u$.
3. Additive identity: There exists a zero vector $0 \in V$, such that $u+0=u$ for all $u \in V$.
4. Additive inverse: For each vector $u \in V$, there exists an additive inverse $-u \in V$ such that $u+$ $(-u)=0$.
Definition 1.2 (Scalar multiplication). A set V equipped with vector addition $+: V \times V \rightarrow V$ is also equipped with field scalar multiplication mapping $\cdot: \mathbb{F} \times V \rightarrow V$ defined by $\cdot(\alpha, v)=\alpha v \in V$, if this mapping satisfies the following four axioms.
5. Field compatibility: For all scalars $\alpha, \beta \in \mathbb{F}$ and vector $u \in V$, we have $\alpha(\beta u)=(\alpha \beta) u$.
6. Multiplicative identity: There exists a multiplicative identity element $1 \in \mathbb{F}$, such that $1 u=u$ for all $u \in V$.
7. Distributivity over vector addition: For each scalar $\alpha \in \mathbb{F}$ and vectors $u, v \in V$, we have $\alpha(v u)=$ $\alpha u+\alpha v$.
8. Distributivity over field addition: For all scalars $\alpha, \beta \in \mathbb{F}$ and vector $u \in V$, we have $(\alpha+\beta) u=$ $\alpha u+\beta u$.

Definition 1.3. A vector space over the field \mathbb{F} is a set V equipped with vector addition $+: V \times V \rightarrow V$ and scalar multiplication $\cdot: \mathbb{F} \times V \rightarrow V$.
Definition 1.4. A set of vectors $W \subseteq V$ are called linearly independent, if for any nonzero vector $\alpha \in \mathbb{F}^{W}$ with finite $\sum_{w} \alpha_{w}$, we have $\sum_{w \in W} \alpha_{w} w \neq 0 \in V$.
Definition 1.5. The span of a set of vectors $W \subseteq V$ is defined by

$$
\operatorname{Span}(W) \triangleq\left\{\sum_{w \in W} \alpha_{w} w: \alpha \in \mathbb{R}^{W}, \sum_{w \in W} \alpha_{w} \text { finite }\right\}
$$

Definition 1.6. A basis of any vector space V, is a spanning set of linearly independent vectors.
Theorem 1.7. All bases of a vector space V have identical cardinality, and defined to be its dimension.
Example 1.8 (Vector space). Following are some common examples of vector spaces.

1. Euclidean space of N-dimensions, denoted by \mathbb{R}^{N}.
2. Space of continuous functions over a compact subset $[a, b]$ denoted by $C([a, b])$.
3. Space of random variables defined over probability space (Ω, \mathcal{F}, P) with finite p th moment denoted by L^{p}.

1.2 Inner Product Space

A inner product space is a vector space equipped with an inner product denoted by $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following axioms.

1. Symmetry: For all vectors $x, y \in V$, we have $\langle x, y\rangle=\langle y, x\rangle$.
2. Linearity: For all scalars $\alpha, \beta \in \mathbb{F}$ and vectors $x, y, z \in V$, we have $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$.
3. Definiteness: For all vectors $x \in V$, we have $\langle x, x\rangle \geqslant 0$, and $\langle x, x\rangle=0$ iff $x=0$.

Example 1.9 (inner product spaces). Following are some common examples of inner product spaces.

1. For the vector space $V=\mathbb{R}^{N}$ of N-dimensional vectors, the inner product is defined as $\langle x, y\rangle \triangleq$ $x^{T} y=\sum_{i}^{N} x_{i} y_{i}$.
2. For vector space $V=C\left(\mathbb{R}^{N}\right)$ of continuous functions, the inner product is defined as $\langle f, g\rangle \triangleq$ $\int_{\mathbb{R}^{N}}(f, g)(t) d t$.
3. For the vector space of random variables, the inner product $\langle\cdot, \cdot\rangle: L^{p} \times L^{q} \rightarrow \mathbb{R}$ is defined as $\langle X, Y\rangle \triangleq \mathbb{E} X Y$ for conjugate pairs $p, q \geqslant 1$ such that $1 / p+1 / q=1$

1.3 Norms

Definition 1.10. Norm is a mapping $\|\cdot\|: V \rightarrow \mathbb{R}_{+}$that satisfy the following axioms.

1. Definiteness: For all vectors $v \in V$, we have $\|v\|=0$ iff $v=0$.
2. Homogeneity: For all scalars $\alpha \in \mathbb{R}$ and vectors $v \in V$, we have $\|\alpha v\|=|\alpha|\|v\|$.
3. Triangle inequality: For all vectors $v, w \in V$, we have $\|v+w\| \leqslant\|v\|+\|w\|$.

Example 1.11 (Norms). For a vector space $V=\mathbb{R}^{N}$ of N dimensional vectors, we can define the p-norm for $p>1$ as $\|x\|_{p} \triangleq\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ for all $x \in \mathbb{R}^{N}$. For $p=1$, we have $\|x\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right|$. For $p=\infty$, we have $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$. For $p=2$, the norm is Euclidean norm.
Proposition 1.12 (Holder's Inequality). Let $p, q \geqslant 1$ be a conjugate pair, i.e. $\frac{1}{p}+\frac{1}{q}=1$ Then,

$$
|\langle x, y\rangle| \leqslant\|x\|_{p}\|y\|_{q} \text { for all } x, y \in \mathbb{R}^{N} .
$$

Proof. The Holder's inequality is trivially true if $x=0$ or $y=0$. Hence, we assume that $\|x\|\|y\|>0$, and let $a \triangleq \frac{\left|x_{i}\right|}{\|x\|_{p}}$ and $b \triangleq \frac{|y|_{i}}{\|y\|_{q}}$. We will use the Young's inequality $\frac{1}{p} a^{p}+\frac{1}{q} b^{q} \geqslant a b$ for all $a, b>0$, that implies that

$$
\frac{\left|x_{i}\right|^{p}}{p\|x\|_{p}^{p}}+\frac{\left|y_{i}\right|^{q}}{q\|y\|_{q}^{q}} \geqslant \frac{|x|_{i}|y|_{i}}{\|x\|_{p}\|y\|_{q}}, \text { for all } i \in[N] .
$$

Since $|\langle x, y\rangle| \leqslant \sum_{i=1}^{N}\left|x_{i}\right|\left|y_{i}\right|$, we get the result by summing both sides over $i \in[N]$ in the above inequality.

2 Review of Convex Optimization

Let $X \subseteq \mathbb{R}^{N}$ for $N \geqslant 1$ and $f: X \rightarrow \mathbb{R}$ be a smooth function.
Definition 2.1 (Gradient). The gradient of function f at point $x \in \mathcal{X}$ is defined as the column vector $\nabla f(x) \in \mathbb{R}^{N}$, where the entry $i \in[N]$ is defined as $\nabla f_{i}(x) \triangleq \frac{\partial f}{\partial x_{i}}(x)$.

Definition 2.2 (Hessian). The Hessian of function f at point $x \in \mathcal{X}$ is denoted by the matrix $\nabla^{2} f(x) \in$ $\mathbb{R}^{N \times N}$, where the entry $(i, j) \in[N] \times[N]$ is defined as $\nabla^{2} f_{i, j}(x) \triangleq \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)$.

Remark 1. Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a smooth function over N-dimensional reals. Then, we can write its Taylor series expansion around the neighborhood of $x \in \mathbb{R}^{N}$, in terms of the gradient vector $\nabla f(x) \in \mathbb{R}^{N}$ and the Hessian matrix $\nabla^{2} f(x) \in \mathbb{R}^{N \times N}$, as

$$
\begin{equation*}
f(y)=f(x)+\langle\nabla f(x),(y-x)\rangle+\frac{1}{2}\left\langle(y-x), \nabla^{2} f(x)(y-x)\right\rangle+o\left(\|y-x\|_{2}^{2}\right) . \tag{1}
\end{equation*}
$$

Definition 2.3 (Stationary Point). A point $x \in \mathcal{X}$ is called a stationary point of $f: X \rightarrow \mathbb{R}$, if f attains a local extremum at x.

Remark 2. If $f: X \rightarrow \mathbb{R}$ is smooth, then $\nabla f(x)=0$ at a stationary point $x \in X$.

2.1 Convexity

Definition 2.4 (Convex Set). A set X is called convex if for all $x, y \in X$ and $\alpha \in[0,1]$, the convex combination $\alpha x+\bar{\alpha} y \in X$ where $\bar{\alpha} \triangleq(1-\alpha)$.

Definition 2.5 (Convex Hull). A convex hull of a set A is the smallest convex set including A, i.e. $\operatorname{conv}(A) \triangleq\left\{\sum_{x \in A} \alpha_{x} x: 0 \leqslant \alpha_{x} \leqslant 1, \sum_{x \in A} \alpha_{x}=1\right\}$.
Definition 2.6. Let $X \subseteq \mathbb{R}^{N}$. For a function $f: X \rightarrow \mathbb{R}$, we define its epigraph as

$$
\operatorname{Epi}(f) \triangleq\{(x, y) \in X \times \mathbb{R}: y \geqslant f(x)\}
$$

Definition 2.7. A function $f: X \rightarrow \mathbb{R}$ is convex if the associated domain X and epigraph Epi (f) are convex sets.

Theorem 2.8. Let $X \subset \mathbb{R}^{N}$ be a convex set. Then the following are equivalent statements.

1. $f: X \rightarrow \mathbb{R}$ is a convex function.
2. For all $\alpha \in[0,1]$, we have $f(\alpha x+(1-\alpha) y) \leqslant \alpha f(x)+(1-\alpha) f(y)$.
3. For differentiable f, we have $f(y)-f(x) \geqslant\langle\nabla f(x), y-x\rangle$ for all $x, y \in X$.
4. For twice differentiable f, we have $\nabla^{2} f \succeq 0$, i.e. $\nabla^{2} f$ is a positive semi-definite matrix.

Proof. For convex set $X \subseteq \mathbb{R}^{N}$ and a function $f: X \rightarrow \mathbb{R}$, we will show that statement 1 implies statement 2 , which implies statement 3 , which implies statement 4 , which implies statement 1.
$1 \Longrightarrow 2$: Let $(x, f(x)),(y, f(y)) \in \operatorname{Epi}(f)$ for $x, y \in \mathcal{X}$. Let $\alpha \in[0,1]$, then from the convexity of X, we have $\alpha x+\bar{\alpha} y \in X$. Further from the convexity of $\operatorname{Epi}(f)$, we have $(\alpha x+\bar{\alpha} y, \alpha f(x)+\bar{\alpha} f(y)) \in \operatorname{Epi}(f)$. That is, $\alpha f(x)+\bar{\alpha} f(y) \geqslant f(\alpha x+\bar{\alpha} y)$.
$2 \Longrightarrow$ 3: Recall that $\alpha x+\bar{\alpha} y=x+\bar{\alpha}(y-x)$. From statement 2, we have $f(y)-f(x) \geqslant \frac{f(\alpha x+\bar{\alpha} y)-f(x)}{\bar{\alpha}}$. Taking $\bar{\alpha} \rightarrow 0$, we observe that the right hand side is equal to $\langle\nabla f(x), y-x\rangle$.
$3 \Longrightarrow 4:$ From (1) and statement 3 , it follows that for any $x, y \in X f(y)-f(x)-\langle\nabla f(x), y-x\rangle=\frac{1}{2}(y-$ $x)^{T} \nabla^{2} f(x)(y-x)+o\left(\|y-x\|_{2}^{2}\right) \geqslant 0$.
$4 \Longrightarrow 1$: Let $\alpha \in[0,1]$. Then, it suffices to show that $\alpha f\left(x_{1}\right)+\bar{\alpha} f\left(x_{2}\right) \geqslant f\left(\alpha x_{1}+\bar{\alpha} x_{2}\right)$. From the Taylor expansion of f in the neighborhood of x_{2}, we get

$$
\alpha\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)=\alpha\left\langle\nabla f\left(x_{2}\right), x_{1}-x_{2}\right\rangle+\frac{\alpha}{2}\left\langle\left(x_{1}-x_{2}\right), \nabla^{2} f\left(x_{2}\right)\left(x_{1}-x_{2}\right)\right\rangle+o\left(\left\|x_{1}-x_{2}\right\|_{2}^{2}\right) .
$$

Similarly, we write the Taylor expansion of f in the neighborhood of x_{2}, to get

$$
f\left(\alpha x_{1}+\bar{\alpha} x_{2}\right)-f\left(x_{2}\right)=\alpha\left\langle\nabla f\left(x_{2}\right), x_{1}-x_{2}\right\rangle+\frac{\alpha^{2}}{2}\left\langle\left(x_{1}-x_{2}\right), \nabla^{2} f\left(x_{2}\right)\left(x_{1}-x_{2}\right)\right\rangle+o\left(\left\|x_{1}-x_{2}\right\|_{2}^{2}\right)
$$

Taking the difference, we get $\alpha\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right) \geqslant f\left(\alpha x_{1}+\bar{\alpha} x_{2}\right)-f\left(x_{2}\right)$.

Example 2.9 (Convex Function). Following functions $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are convex.

1. Linear Function: $f(x)=\langle w, x\rangle$ for each $w \in \mathbb{R}^{N}$.
2. Quadratic Function: $f(x)=x^{T} A x$ for a positive semi definite matrix $A \in \mathbb{R}^{N \times N}$.
3. Abs Maximum: $f(x)=\max \left\{\left|x_{i}\right|: i \in[N]\right\}=\|x\|_{\infty}$.

Lemma 2.10 (Composition of functions). We define a composition function $f=h \circ g$ for functions $h: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{N} \rightarrow \mathbb{R}$, by defining $f(x) \triangleq h(g(x))$ for all $x \in \mathbb{R}^{N}$. Then, the following statements are true.

1. If h is convex and nondecreasing and g is convex, then f is convex.
2. If h is convex and nonincreasing and g is concave, then f is convex.
3. If h is concave and nondecreasing and g is concave, then f is concave.
4. If h is concave and nonincreasing and g is convex, then f is concave.

Proof. We will use the property that a function f is convex iff $\operatorname{dom}(f)$ is convex and $f(\alpha x+\bar{\alpha} y) \leqslant$ $\alpha f(x)+\bar{\alpha} f(y)$ for all $\alpha \in[0,1]$. Recall that \mathbb{R}^{N} is convex for all $N \geqslant 1$. We will only show the first statement, and rest follow the same steps. Let $x, y \in \mathbb{R}^{N}$ and $\alpha \in[0,1]$. From the convexity of g, we get $g(\alpha x+\bar{\alpha} y) \leqslant \alpha g(x)+\bar{\alpha} g(y)$. From the nondecreasing property of h, we get $h(g(\alpha x+\bar{\alpha} y)) \leqslant h(\alpha g(x)+$ $\bar{\alpha} g(y))$. From the convexity of h, we get $h(\alpha g(x)+\bar{\alpha} g(y)) \leqslant \alpha h(g(x))+\bar{\alpha} h(g(y))$.
Theorem 2.11 (Jensen's Inequality). Let $X: \Omega \rightarrow X \subseteq \mathbb{R}^{N}$ be a random vector with finite marginal means, and $f: X \rightarrow \mathbb{R}$ be a convex function. Then the mean $\mathbb{E}[X] \in X$, the mean $\mathbb{E}[f(X)]$ is fnite, and $f(\mathbb{E}[X]) \leqslant \mathbb{E}[f(X)]$.

Proof. We will show this for simple random vector $X: \Omega \rightarrow\left\{x_{1}, \ldots, x_{m}\right\} \subseteq X$, such that $\alpha_{i} \triangleq P\left\{X=x_{i}\right\}$ for all $i \in[m]$. Then, the mean $\mathbb{E} X=\sum_{i=1}^{m} \alpha_{i} x_{i} \in X$ from the convexity of \bar{X}, and $\mathbb{E} f(X)=\sum_{i=1}^{m} \alpha_{i} f\left(x_{i}\right)$ is finite. Further, from the convexity of f, we get $f\left(\sum_{i=1}^{m} \alpha_{i} x_{i}\right) \leqslant \sum_{i=1}^{m} \alpha_{i} f\left(x_{i}\right)$.
Corollary 2.12 (Young's inequality). Let $p, q \geqslant 1$ be a conjugate pair such that $\frac{1}{p}+\frac{1}{q}=1$. Then, $a b \leqslant \frac{a^{p}}{p}+\frac{b^{q}}{q}$.
Proof. Take a random variable $X: \Omega \rightarrow\left\{a^{p}, b^{q}\right\}$ with probability mass function $P_{X}\left(a^{p}\right)=\frac{1}{p}$ and $P_{X}\left(b^{q}\right)=$ $\frac{1}{q}$. Then, from the concavity of \log

$$
\ln \left(\frac{1}{p} a^{p}+\frac{1}{q} b^{q}\right)=\ln \mathbb{E} X \geqslant \mathbb{E} \ln X=\frac{1}{p} \ln a^{p}+\frac{1}{q} \ln b^{q}=\ln a b .
$$

Since $\ln (\cdot)$ is an increasing function, the above inequality implies the result.

2.2 Constrained Optimization

Problem 1 (Primal problem). Consider a cost function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and a constraint function $g: \mathbb{R}^{N} \rightarrow$ \mathbb{R}^{m}. The primal problem is $p^{*} \triangleq \inf \{f(x): x \in X\}$, where the constraint set is

$$
\begin{equation*}
X \triangleq \cap_{i=1}^{m}\left\{x \in \mathbb{R}^{N}: g_{i}(x) \leqslant 0\right\} \tag{2}
\end{equation*}
$$

Definition 2.13 (Lagrangian). For the Problem 1 , we define an associated Lagrangian function $\mathcal{L}: \mathbb{R}^{N} \times$ $\mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ for Lagrange or dual variables $\alpha \in \mathbb{R}_{+}^{m}$ and primal variables $x \in \mathbb{R}^{N}$, as

$$
\begin{equation*}
\mathcal{L}(x, \alpha) \triangleq f(x)+\langle\alpha, g(x)\rangle . \tag{3}
\end{equation*}
$$

Definition 2.14 (Dual function). The dual function $F: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ associated with the Problem 1 is defined for dual variables $\alpha \in \mathbb{R}_{+}^{m}$ as

$$
\begin{equation*}
F(\alpha) \triangleq \inf \left\{\mathcal{L}(x, \alpha): x \in \mathbb{R}^{N}\right\} \tag{4}
\end{equation*}
$$

Theorem 2.15. The following are true for the dual function $F: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ defined in (4) for the Problem 1

1. F is concave in $\alpha \in \mathbb{R}_{+}^{m}$.
2. $F(\alpha) \leqslant \mathcal{L}(x, \alpha)$ for all $\alpha \in \mathbb{R}_{+}^{m}$ and $x \in \mathbb{R}^{N}$.
3. $F(\alpha) \leqslant p^{*}$ for all $\alpha \in \mathbb{R}_{+}^{m}$.

Proof. Recall that $\mathcal{L}(\alpha)=f(x)+\langle\alpha, g(x)\rangle$ is a linear function of $\alpha \in \mathbb{R}_{+}^{m}$, and $F(\alpha)=\inf _{x} \mathcal{L}(x, \alpha)$.

1. Let $\beta \in[0,1]$ and $\alpha_{1}, \alpha_{2} \in \mathbb{R}_{+}^{m}$ and $x \in X$. It follows from the linearity of Lagrangian in α that

$$
F\left(\beta \alpha_{1}+\bar{\beta} \alpha_{2}\right)=\inf _{x}\left[\beta \mathcal{L}\left(x, \alpha_{1}\right)+\bar{\beta} \mathcal{L}\left(x, \alpha_{2}\right)\right] \geqslant \beta \inf _{x} \mathcal{L}\left(x, \alpha_{1}\right)+\bar{\beta} \inf _{x} \mathcal{L}\left(x, \alpha_{2}\right)=\beta F\left(\alpha_{1}\right)+\bar{\beta} F\left(\alpha_{2}\right) .
$$

2. From the definition of F, it follows that $F(\alpha) \leqslant \mathcal{L}(x, \alpha)$ for all $x \in \mathbb{R}^{N}$.
3. Recall that $g_{i}(x) \leqslant 0$ for all $x \in \mathcal{X}$, and hence $\langle\alpha, g(x)\rangle \leqslant 0$ for all $x \in X$. Therefore, $F(\alpha) \leqslant f(x)$ for all $x \in \mathcal{X}$, and hence the result follows.

Problem 2. Dual problem The dual problem associated with primal problem defined in Problem 1 is

$$
d^{*} \triangleq \max \left\{F(\alpha): \alpha \in \mathbb{R}_{+}^{m}\right\} .
$$

Remark 3. From the properties of dual function $F: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ in Theorem 2.15, we obtain that F is concave in $\alpha \in \mathbb{R}_{+}^{m}$. Since \mathbb{R}_{+}^{m} is a convex set, it follows that the dual problem is convex. We further observe that the optimal value of dual problem $d^{*} \leqslant p^{*}$. The difference of optimal values $\left(p^{*}-d^{*}\right)$ is called the duality gap. For a primal problem, the strong duality holds if the duality gap is zero, or $d^{*}=p^{*}$.

2.3 Convex constrained optimization

Definition 2.16 (Saddle point). For a Lagrangian $\mathcal{L}: \mathbb{R}^{N} \times \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$, a saddle point (x^{*}, α^{*}) sastifies

$$
\sup _{\alpha \in \mathbb{R}_{+}^{m}} \mathcal{L}\left(x^{*}, \alpha\right) \leqslant \mathcal{L}\left(x^{*}, \alpha^{*}\right) \leqslant \inf _{x \in \mathbb{R}^{N}} \mathcal{L}\left(x, \alpha^{*}\right) .
$$

Theorem 2.17 (Sufficient condition). For the primal problem defined in Problem 1 if $\left(x^{*}, \alpha^{*}\right)$ is a saddle point of the associated Lagrangian \mathcal{L}, then $x^{*} \in X$ and $p^{*}=f\left(x^{*}\right)=F\left(\alpha^{*}\right)$.

Proof. Let $\left(x^{*}, \alpha^{*}\right)$ be the saddle point of the Lagrangian \mathcal{L} associated with the Problem 1 . From the definition of dual function F, we get that $\mathcal{L}\left(x^{*}, \alpha^{*}\right) \leqslant F\left(\alpha^{*}\right) \leqslant \mathcal{L}\left(x^{*}, \alpha^{*}\right)$. It follows that $F\left(\alpha^{*}\right)=\mathcal{L}\left(x^{*}, \alpha^{*}\right)$.

Recall that $\mathcal{L}\left(x^{*}, \alpha\right)=f\left(x^{*}\right)+\left\langle\alpha, g\left(x^{*}\right)\right\rangle$. We assume that there exists an $i \in[m]$ such that $g_{i}(x)>$ 0 , then we can take α_{i} large enough so that $\mathcal{L}\left(x^{*}, \alpha\right) \geqslant \mathcal{L}\left(x^{*}, \alpha^{*}\right)$. This contradicts the saddle point condition, and hence $x^{*} \in X$. Therefore $\left\langle\alpha, g\left(x^{*}\right)\right\rangle \leqslant 0$ for all $\alpha \in \mathbb{R}_{+}^{m}$. This implies that $\left\langle\alpha^{*}, g\left(x^{*}\right)\right\rangle=0$ and hence $p^{*}=f\left(x^{*}\right)=F\left(\alpha^{*}\right)$.
Definition 2.18 (Strong constraint qualification). The strong constraint qualification or Slater's condition is defined as the existence of a point $x \in \mathcal{X}^{o}$ such that $g_{i}(x)<0$ for all $i \in[m]$.
Theorem 2.19 (Strong necessary condition). Let the cost function f and constraints g_{i} for $i \in[m]$ be convex functions, such that the Slater's condition holds, and x^{*} be the solution of the Problem 11. Then, there exists $\alpha^{*} \in \mathbb{R}_{+}^{m}$ such that $\left(x^{*}, \alpha^{*}\right)$ is a saddle point of the associated Lagrangian \mathcal{L}.
Definition 2.20 (Weak constraint qualification). The weak constraint qualification or weak Slater's condition is defined as the existence of a point $x \in \mathcal{X}^{0}$ such that for each $i \in[m]$ either $g_{i}(x)<0$ or $g_{i}(x)=0$ and g_{i} affine.

Theorem 2.21 (Weak necessary condition). Let the cost function f and constraints g_{i} for $i \in[m]$ be convex differentiable functions, such that the weak Slater's condition holds, and x^{*} be the solution of the Problem 1 . Then, there exists $\alpha^{*} \in \mathbb{R}_{+}^{m}$ such that $\left(x^{*}, \alpha^{*}\right)$ is a saddle point of the associated Lagrangian \mathcal{L}.

Remark 4. The strong duality holds when the primal problem is convex with qualifying constraints.
Theorem 2.22 (Karush-Kuhn-Tucker (KKT)). Let the cost function f and constraint functions g_{i} for all $i \in[m]$ be convex and differentiable functions, such that the constraints are qualified. Then $x^{*} \in \mathbb{R}^{N}$ is a solution of the constrained problem iff there exists $\alpha^{*} \in \mathbb{R}_{+}^{m}$ such that

$$
\nabla_{x} \mathcal{L}\left(x^{*}, \alpha^{*}\right)=\nabla_{x} f\left(x^{*}\right)+\left\langle\alpha^{*}, \nabla_{x} g\left(x^{*}\right)\right\rangle=0, \quad \nabla_{\alpha} \mathcal{L}\left(x^{*}, \alpha^{*}\right)=g\left(x^{*}\right) \leqslant 0, \quad\left\langle\alpha^{*}, g\left(x^{*}\right)\right\rangle=0 .
$$

Proof. From the necessary condition theorem, it follows that if x^{*} is a solution to the primal problem, then there exists dual variables α^{*} such that $\left(x^{*}, \alpha^{*}\right)$ is a saddle point of the Lagrangian, and all three conditions are satisfied.

Conversely, if all three conditions are met, then for any $x \in \mathbb{R}^{N}$ such that $g_{i}(x) \leqslant 0$ for all $i \in[m]$, we have
$f(x)-f\left(x^{*}\right) \geqslant\left\langle\nabla_{x} f\left(x^{*}\right), x-x^{*}\right\rangle=-\sum_{i=1}^{m} \alpha_{i}^{*}\left\langle\nabla_{x} g_{i}\left(x^{*}\right), x-x^{*}\right\rangle \geqslant-\left\langle\alpha^{*}, g(x)-g\left(x^{*}\right)\right\rangle=-\left\langle\alpha^{*}, g(x)\right\rangle \geqslant 0$.
The first inequality follows from the convexity of f. The subsequent equality follows from the first condition. Next inequality follows from the convexity of g_{i} for all $i \in[m]$. Next equality follows from the third condition, and the last inequality from the fact that $x \in \mathcal{X}$.

