
Lecture-07: PAC Learning

1 PAC learning model

Definition 1.1 (PAC-learning). A concept class C ⊆ YX is said to be PAC-learnable if there exists an al-
gorithm A and a polynomial function poly(·, ·, ·, ·) such that for any ϵ > 0 and δ > 0, for all distributions
D on input space X and for any target concept c ∈ C, the following holds for any sample z ∈ (X× Y)m

of size m ⩾ poly( 1
ϵ , 1

δ ,n, size(c)):
P{R(hz)⩽ ϵ}⩾ 1 − δ.

If A further runs in poly( 1
ϵ , 1

δ ,n, size(c)), then C is said to be efficiently PAC-learnable. When such an
algorithm A exists, it is called a PAC-learning algorithm for C.

Remark 1. The cost of computational representation of an input vector x ∈ X is of order n, and of a
concept c is of order size(c).

Remark 2. A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm after ob-
serving a number of points polynomial in 1

ϵ and 1
δ is approximately correct (error at most ϵ) with high

probability (at least 1 − δ), which justifies the PAC terminology. The δ > 0 is used to define the confi-
dence 1− δ and ϵ > 0 the accuracy 1− ϵ. Note that if the running time of the algorithm is polynomial in
1
ϵ and 1

δ , then the sample size m must also be polynomial if the full sample is received by the algorithm.

Remark 3. The following statements are true for the PAC framework.
1. It is a distribution-free model.
2. The training sample and the test examples are drawn from the same distribution D.
3. It deals with the question of learnability for a concept class C and not a particular concept.

2 Guarantees for finite hypothesis sets — consistent case

Theorem 2.1 (Learning bounds — finite H, consistent case). Let H ⊂ YX be a finite set of functions. Let A
be an algorithm that for any target concept c ∈ H and i.i.d. sample z ∈ (X× Y)m returns a consistent hypothesis
hz ∈ H such that R̂(hz) = 0. Then, for any ϵ,δ > 0, the inequality P{R(hz)⩽ ϵ}⩾ 1 − δ holds if

m ⩾
1
ϵ

(
ln |H|+ ln

1
δ

)
.

This sample complexity result admits the following equivalent statement as a generalization bound, for any ϵ,δ >
0, with probability at least 1 − δ

R(hz)⩽
1
m

(
ln |H|+ ln

1
δ

)
.

Proof. Fix ϵ > 0. We provide a uniform convergence bound for all consistent hypotheses hz ∈ H, since
we don’t know which of these is selected by the algorithm A. For a given hypothesis h and any unla-
beled training sample X ∈ Xm drawn i.i.d. from the same distribution D, the probability of getting zero
empirical risk is

P
{

R̂(h) = 0
}
= P(∩m

i=1 {h(Xi) = Yi} =
m

∏
i=1

P{h(Xi) = Yi} = (1 − R(h))m.

Consider any h ∈ H such that R(h) = E1{h(X) ̸=Y} > ϵ, then the probability for any sample z ∈ (X× Y)m

drawn i.i.d. from the same distribution D with zero empirical risk is

P
(
∪h∈H

{
R̂(h) = 0

})
⩽ ∑

h∈H
P
{

R̂(h) = 0
}

.
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We can upper bound the probability of a hypothesis being consistent in terms of its generalization risk.
Consider any h ∈ H such that R(h) = E1{h(X) ̸=Y} > ϵ, then P

{
R̂(hz) = 0

}
< (1− ϵ)m. The result follows

from substituting this bound in the union bound.

3 Guarantees for finite hypothesis sets — inconsistent case

In many practical cases, the hypothesis set H may not consist of the target concept c ∈ C.

Corollary 3.1 (Hoeffding). Fix ϵ > 0 and let z ∈ (X× {0,1})m be an i.i.d. sample of size m. Then, for any
hypothesis h : X→ {0,1}

P
{

R̂(h)− R(h)⩾ ϵ
}
⩽ exp(−2mϵ2), P

{
R̂(h)− R(h)⩽−ϵ

}
⩽ exp(−2mϵ2).

By the union bound, we have P
{∣∣R̂(h)− R(h)

∣∣⩾ ϵ
}
⩽ 2exp(−2mϵ2).

Proof. Recall that R̂(h) = 1
m ∑m

i=11{Yi ̸=h(Xi)} and R(h) = ER̂(h). We get the results by taking the random
variables 1{Yi ̸=h(Xi)} ∈ {0,1}, and applying Theorem ?? with σ2 = m.

Corollary 3.2 (Generalization bound — single hypothesis). For a hypothesis h : X→{0,1} and any δ > 0,
the following inequality holds with probability at least 1 − δ

R(h)⩽ R̂(h) +

√
ln 2

δ

2m
.

Theorem 3.3 (Learning bound — finite H, inconsistent case). Let H be a finite hypothesis set. Then, for
any δ > 0, with probability at least 1 − δ,

R(h)⩽ R̂(h) +

√
ln |H|+ ln 2

δ

2m
, for all h ∈ H.

Proof. Let h1, . . . , h|H| be the elements of H. Using the union bound and applying the generalization
bound, we get

P(∪h∈H
{

R̂(h)− R(h) > ϵ
}
)⩽ ∑

h∈H
P
{

R̂(h)− R(h) > ϵ
}
⩽ 2 |H|exp(−2mϵ2).

Setting the right-hand side to be equal to δ completes the proof.

Remark 4. We observe the following from the upper bound on the generalized risk.
1. For finite hypothesis set H,

R(h)⩽ R̂(h) + O

(√
log2 |H|

m

)
2. The number of bits needed to represent H is log2 |H|.
3. A larger sample size m guarantees better generalization.
4. The bound increases logarithmically with |H|.
5. The bound is worse for inconsistent case

√
log2|H|

m compared to log2|H|
m for the consistent case.

6. For a fixed |H|, to attain the same guarantee as in the consistent case, a quadratically larger labeled
sample is needed.

7. The bound suggests seeking a trade-off between reducing the empirical error versus controlling
the size of the hypothesis set: a larger hypothesis set is penalized by the second term but could
help reduce the empirical error, that is the first term. But, for a similar empirical error, it suggests
using a smaller hypothesis set.

4 Generalities

4.1 Deterministic versus stochastic scenarios

Consider the stochastic scenario where the distribution D is defined over X× Y. The training data is a
labeled sample T = ((Xi,Yi) : i ∈ [m]) drawn i.i.d. from the distribution D. The learning problem is to
find a hypothesis h ∈ H with small generalization error

R(h) = P{h(X) ̸= Y} = E[1{h(X) ̸=Y}].
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Definition 4.1 (Agnostic PAC-learning). Let H be a hypothesis set. An algorithm A is an agnostic PAC-
learning algorithm if there exists a polynomial function poly(·, ·, ·, ·) such that for any ϵ > 0 and δ > 0,
for all distributions D over X× Y, the following holds for any sample size m ⩾ poly( 1

ϵ , 1
δ ,n, size(c))

P
{

R(hS)− min
h∈H

R(h)⩽ ϵ

}
⩾ 1 − δ.

Further, if the algorithm A runs in poly( 1
ϵ , 1

δ ,n, size(c)), then it is said to be an efficient agnostic PAC-
learning algorithm.

4.2 Bayes error and noise

In the deterministic case, by definition, there exists a target function c : X → Y with no generalization
error R(h) = 0. In the stochastic case, there is a minimal non-zero error for any hypothesis.

Definition 4.2 (Bayes error). Given a distribution D over X× Y, the Bayes error R∗ is defined as the
infimum of the errors achieved by measurable functions h : X→ Y

R∗ ≜ inf
h measurable

R(h).

A hypothesis h with R(h) = R∗ is called a Bayes hypothesis or Bayes classifier.

In the deterministic case, we have R∗ = 0, however R∗ ̸= 0 in the stochastic case. Recall that

R(h) = E1{h(X) ̸=Y} =
∫

x∈X
dP(x) ∑

y∈Y
P(y|x)1{h(x) ̸=y}.

The Bayes classifier hB can be defined in terms of the conditional probabilities as

hB(x) = argmax
y∈Y

P(y|x), for all x ∈ X.

The average error made by hB on x ∈X is thus min
{

∑z∈Y:z ̸=y P(z|x)
}

, and this is the minimum possible
error.

Definition 4.3 (Noise). For binary classification Y= {0,1}, given a distribution D over X× Y, the noise
at point x ∈ X is defined by

n(x) = min{P(1|x), P(0|x)} .
The average noise or the noise associated to D is E[n(X)].

Remark 5. The average noise is the Bayes error, i.e. E[n(X)] = R∗. The noise determines the difficulty of
the learning task.

4.3 Estimation and approximation errors

For a hypothesis set H, we let h∗ be the best-in-class hypothesis in the H with minimal error. Then, the
difference between the generalization risk and Bayes error can be written as

R(h)− R∗ = R(h)− R(h∗) + R(h∗)− R∗.

Definition 4.4. The second term R(h∗)− R∗ is called the approximation error, and is a measure of how
well the Bayes error can be approximated by the class H.

Approximation error is a measure of the richness of the hypothesis set H, and not available in gen-
eral.

Definition 4.5. The first term R(h)−R(h∗) is called the estimation error, and measures the performance
of hypothesis h with respect to best-in-class hypothesis.

The definition of agnostic PAC-learning is also based on the estimation error. The estimation error of
the hypothesis hS returned by the algorithm A after training on a sample S, can sometimes be bounded
in terms of the generalization error.

Example 4.6 (Empirical risk minimization (ERM)). Let hE
T denote the hypothesis h ∈ H that minimizes

the empirical risk for the labeled sample T. In particular, R̂hE
T
⩽ R(h∗) and we can write

R(hE
T)−R(h∗) = R(hE

T)− R̂(hE
T)+ R̂(hE

T)−R(h∗)⩽ R(hE
T)− R̂(hE

T)+ R̂(h∗)−R(h∗)⩽ 2sup
h∈H

∣∣R(h)− R̂(h)
∣∣ .

The upper bound can be bounded by the learning bounds and increases with the size of the hypothesis
set |H|, while the Bayes error R(h∗) decreases with |H|.
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4.4 Model selection

Example 4.7 (Structural risk minimization (SRM)). Consider an infinite sequence of hypothesis sets
with increasing sizes Hn ⊂ Hn+1 for all n ⩾ 0. For each Hn, we can find the ERM solution hE

n and
complexity term c(Hn,m). Then,

hS
T = arg min

h∈Hn ,n∈N
(R̂T(h) + c(Hn,m)).

If R̂T(h) = 0 for some h ∈ Hn, then R̂T(h) = 0 for all Hm, m ⩾ n.

Example 4.8 (Regularized risk minimization). An alternative family of algorithms is based on a more
straightforward optimization that consists of minimizing the sum of the empirical error and a regular-
ization term that penalizes more complex hypotheses. The regularization term is typically defined as
∥h∥2 for some norm ∥·∥ when H is a vector space, and

hR
T = argmin

h∈H
R̂T(h) + λ∥h∥2 ,

where λ ⩾ 0 is a regularization parameter, which can be used to determine the trade-off between em-
pirical error minimization and control of the complexity. In practice, λ is typically selected using n-fold
cross-validation.

A Hoeffding’s lemma

Lemma A.1 (Hoeffding). Let X be a zero-mean random variable with X ∈ [a,b] for b > a. Then, for any t > 0,
we have

E[etX ]⩽ e
t2(b−a)2

8 .

Proof. From the convexity of the function f (x) = etx, we have for any x = λa + (1 − λ)b ∈ [a,b] for
λ = b−x

b−a ∈ [0,1]

ex = f (x)⩽ λ f (a) + (1 − λ) f (b) =
b − x
b − a

eta +
x − a
b − a

etb.

Since E[X] = 0, taking expectation on both sides, we get from the linearity of the expectations

E[etX ]⩽
b

b − a
eta +

−a
b − a

etb = eϕ(t),

where the function ϕ(t) is given by

ϕ(t) = ta + ln
(

b
b − a

+
−a

b − a
et(b−a)

)
.

We can write the first two derivatives of this function ϕ(t) as

ϕ′(t) = a − aet(b−a)

b
b−a −

a
b−a et(b−a)

= a − a
b

b−a e−t(b−a) − a
b−a

,

ϕ”(t) =
−abe−t(b−a)

( b
b−a e−t(b−a) − a

b−a )
2
= (b − a)2

(
α

(1 − α)e−t(b−a) + α

)(
(1 − α)e−t(b−a)

(1 − α)e−t(b−a) + α)

)
⩽

(b − a)2

4
,

where we have denoted α = −a
b−a ⩾ 0 since E[X] = 0. The result follows from the second order expansion

of ϕ(t), such that we get for some θ ∈ [0, t]

ϕ(t) = ϕ(0) + tϕ′(0) +
t2

2
ϕ”(θ)⩽ t2 (b − a)2

8
.

Theorem A.2 (Hoeffding). Let (Xi ∈ [ai,bi] : i ∈ [m]) be a vector of m independent random variables, and
define σ2 = ∑m

i=1(bi − ai)
2. Then, for any ϵ > 0 and Sm ≜ ∑m

i=1 Xi, we have

P{Sm − ESm ⩾ ϵ}⩽ exp
(
−2ϵ2

σ2

)
, P{Sm − ESm ⩽−ϵ}⩽ exp

(
−2ϵ2

σ2

)
.
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Proof. From the definition of indicator sets and for any increasing function ϕ : R → R, we can write for
any random variable X

ϕ(X)⩾ ϕ(X)1{X⩾ϵ} = ϕ(X)1{ϕ(X)⩾ϕ(ϵ)} ⩾ ϕ(ϵ)1{X⩾ϵ}.

Taking the random variable Sm − E[Sm] and ϕ(x) = etx, and taking expectation on both sides, we get
the Chernoff bound

P{Sm − ESm ⩾ ϵ}⩽ e−tϵE[exp(t(Sm − ESm))] = e−tϵ
m

∏
i=1

E[exp(t(Xi − EXi))]

⩽ e−tϵ
m

∏
i=1

exp(t2(bi − ai)
2/8) = exp

(
−tϵ +

t2σ2

8

)
⩽ exp

(
−2ϵ2

σ2

)
.

The first equality follows from the i.i.d. nature of (Xi : i ∈ [m]), the following inequality follows from
Lemma ??, the equality follows from the definition of σ2, and the last inequality from t∗ = 4ϵ

σ2 .
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