Lecture-09: Growth functions and VC-dimension

1 Growth function

Rademacher complexity can be bounded in terms of the growth function.
Definition 1.1 (Dichotomy). Given a hypothesis set H, a dichotomy of a sample $x \in X^{m}$ is one of the possible ways of labeling the points of sample x using a hypothesis $h \in H$, and denoted by $h_{x} \triangleq$ $\left(h\left(x_{1}\right), \ldots, h\left(x_{m}\right)\right) \in y^{m}$.

Definition 1.2 (Dichotomy set). For hypothesis set H, the set of dichotomies of sample $x \in X^{m}$, is the set of m-length y-valued sequences $H_{x} \triangleq\left\{h_{x}: h \in H\right\} \subseteq y^{m}$.

Definition 1.3 (Growth function). For a hypothesis set H, the growth function $\Pi_{H}: \mathbb{N} \rightarrow \mathbb{N}$ is defined as

$$
\Pi_{H}(m) \triangleq \max _{x \in X^{m}}\left|H_{x}\right|=\max _{x \in X^{m}}\left|\left\{h_{x}: h \in H\right\}\right| .
$$

Remark 1. Growth function is a purely combinatorial measure, and the following holds true for it.
(a) It is the maximum number of distinct ways in which m points can be classified using hypotheses in H.
(b) It is the maximum number of dichotomies for m points using hypotheses in H.
(c) It is a measure of richness of the hypothesis set H.
(d) It doesn't depend on the unknown distribution D, unlike Rademacher complexity.

Lemma 1.4 (Massart). Consider a finite set $A \subset \mathbb{R}^{m}$ with $r \triangleq \max _{x \in A}\|x\|_{2}$, and independent Rademacher random vector $\sigma: \Omega \rightarrow\{-1,1\}^{m}$. Then, we have $\mathbb{E}\left[\frac{1}{m} \sup _{x \in A}\langle\sigma, x\rangle\right] \leqslant \frac{r \sqrt{2 \ln |A|}}{m}$.

Proof. For any $t>0$, using Jensen's inequality for the convex function $f(x)=e^{t x}$, rearranging terms, and bounding the supremum of positive numbers by its sum, we obtain

$$
\exp \left(t \mathbb{E}\left[\sup _{x \in A}\langle\sigma, x\rangle\right]\right) \leqslant \mathbb{E}\left[\exp \left(t \sup _{x \in A}\langle\sigma, x\rangle\right)\right]=\mathbb{E}\left[\sup _{x \in A} e^{t\langle\sigma, x\rangle}\right] \leqslant \mathbb{E}\left[\sum_{x \in A} e^{t\langle\sigma, x\rangle}\right] .
$$

From the independence of Rademacher random vector σ, the application of Hoeffding lemma to independent random vector $t \sigma \circ x$ such that $-t\left|x_{i}\right| \leqslant t \sigma_{i} x_{i} \leqslant t\left|x_{i}\right|$, and the definition of r, we get

$$
\sum_{x \in A} \mathbb{E}\left[e^{t\langle\sigma, x\rangle}\right] \leqslant \sum_{x \in A} \prod_{i=1}^{m} \mathbb{E}\left[e^{t \sigma_{i} x_{i}}\right] \leqslant \sum_{x \in A} \prod_{i=1}^{m} e^{\frac{4 t^{2} x_{i}^{2}}{8}} \leqslant \sum_{x \in A} e^{\frac{t^{2}}{2}\|x\|_{2}^{2}} \leqslant|A| e^{\frac{t^{2} r^{2}}{2}}
$$

Summarizing our results, taking the natural log of both sides and dividing by t, we get $\mathbb{E}\left[\frac{1}{m} \sup _{x \in A}\langle\sigma, x\rangle\right] \leqslant$ $\frac{\ln |A|}{t}+\frac{t r^{2}}{2}$. The upper bound is minimized by taking $t^{*}=\frac{\sqrt{2 \ln |A|}}{r}$. We get the result by dividing the both sides of this minimized upper bound by m.

Corollary 1.5. Let $G \subset\{-1,1\}^{x}$ be a family of functions, then $\mathcal{R}_{m}(G) \leqslant \sqrt{\frac{2 \ln \Pi_{G}(m)}{m}}$.
Proof. For a fixed sample $x=\left(x_{1}, \ldots, x_{m}\right) \in X^{m}$, we denote $\left.g_{x} \triangleq\left(g\left(x_{1}\right), \ldots, g\left(x_{m}\right)\right)\right) \in y^{m}$ for any $g \in G$. Therefore, we can write the restriction of G to sample x, as $G_{x} \triangleq\left\{g_{x}: g \in G\right\}$. Since $g \in G$ takes values in $\{-1,1\}$, the norm of these vectors is \sqrt{m}. Applying Massart's lemma to the restricted set G_{x}, we get

$$
\mathcal{R}_{m}(G)=\mathbb{E}_{x} \hat{\mathcal{R}}_{x}(G)=\mathbb{E}_{x} \mathbb{E}_{\sigma}\left[\sup _{g \in G} \frac{1}{m}\left\langle\sigma, g_{x}\right\rangle\right]=\mathbb{E}_{\sigma, x}\left[\sup _{u \in G_{x}} \frac{1}{m}\langle\sigma, u\rangle\right] \leqslant \mathbb{E}\left[\sqrt{\frac{2 \ln \left|G_{x}\right|}{m}}\right] .
$$

By definition, we have $\left|G_{x}\right| \leqslant \Pi_{G}(m)$, and hence the result follows.

Corollary 1.6 (Growth function generalization bound). Let $H \subset y^{x}$ be a family of functions where $y=$ $\{-1,1\}$. Then, for any $\delta>0$, with probability at least $1-\delta$, for any hypothesis $h \in H$

$$
R(h) \leqslant \hat{R}(h)+\sqrt{\frac{2 \ln \Pi_{H}(m)}{m}}+\sqrt{\frac{\ln \frac{1}{\delta}}{2 m}} .
$$

Remark 2. Growth function bounds can be also derived directly without using Rademacher complexity bounds. The resulting bound is $P\{|R(h)-\hat{R}(h)|>\epsilon\} \leqslant 4 \Pi_{H}(2 m) e^{-\frac{m \epsilon^{2}}{8}}$. The generalization bound obtained from this bound differs from Corollary ?? only in constants.
Remark 3. The computation of the growth function may not be always convenient since, by definition, it requires computing $\Pi_{H}(m)$ for all $m \in \mathbb{N}$.

2 Vapnik-Chervonenkis (VC) dimension

The VC-dimension is also a purely combinatorial notion but it is often easier to compute than the growth function or the Rademacher Complexity. We will consider the target space $y=\{-1,1\}$ in the following.
Definition 2.1 (Shattering). A sample $x \in X^{m}$ is said to be shattered by a hypothesis set H when H realizes all possible dichotomies of x, that is when $\Pi_{H}(m)=2^{m}$.

Definition 2.2 (VC-dimension). The VC-dimension of a hypothesis set H is the size of the largest set that can be fully shattered by H. That is,

$$
\text { VC-dim }(H) \triangleq \max \left\{m \in \mathbb{N}: \Pi_{H}(m)=2^{m}\right\}
$$

Remark 4. By definition, if VC- $\operatorname{dim}(H)=d$, there exists a set of size d that can be fully shattered. This does not imply that all sets of size d or less are fully shattered, in fact, this is typically not the case.
Remark 5. To compute the VC- dimension we will typically show a lower bound for its value and then a matching upper bound. To give a lower bound d for VC-dim (H), it suffices to show that a sample $x \in X^{d}$ can be shattered by H. To give an upper bound, we need to prove that no sample $x \in X^{d+1}$ can be shattered by H. This step is typically more difficult.

Example 2.3 (Intervals on the real line). Consider a hypothesis set H of separating intervals on real line

$$
H \triangleq\left\{h \in\{-1,1\}^{\mathbb{R}}: h=\mathbb{1}_{[a, b]}-\mathbb{1}_{[a, b]^{c}}, a, b \in \mathbb{R}\right\} .
$$

Then $d \geqslant 2$, since $(1,1),(-1,-1),(1,-1),(-1,1)$ can all be realized by $x \in \mathbb{R}^{2}$. Further, there is no sample $x \in \mathbb{R}^{3}$ such that $x_{1}<x_{2}<x_{3}$ and $h_{S}=(1,-1,1)$. That is, no set of three points can be shattered, and hence $\mathrm{VC}-\operatorname{dim}(H)=2$.

Remark 6. The VC-dimension of any vector space of dimension $r<\infty$ can be shown to be at most r.
Theorem 2.4 (Sauer). Let $H \subseteq\{-1,1\}^{X}$ have $\operatorname{VC}-\operatorname{dim}(H)=d$. Then, we have $\Pi_{H}(d) \leqslant \sum_{i=0}^{d}\binom{m}{i}$, for all $m \in N$.

Proof. The proof is by induction on the pair (m, d). If $d=0$, then $\Pi_{H}(1)<2$ for all points $x \in X$, which implies H consists of single function, and therefore the upper bound of unity holds. If $d=1$, then $\Pi_{H}(2)<4, \Pi_{H}(1)=2$, and the upper bound of $1+m=2$ holds. Therefore, the statement holds true for the pairs $(m, d)=(1,1)$ and $(m, d-1)=(1,0)$.

We assume that the inductive hypothesis is true for $(m-1, d-1)$ and $(m-1, d)$. Let $x \in X^{m}$ be the sample with $\Pi_{H}(m)$ dichotomies. That is, $\left|H_{x}\right|=\left|\left\{h_{x}: h \in H\right\}\right|=\Pi_{H}(m)$. We can partition the hypothesis set H by the vectors $h_{x} \in H_{x}$, by defining equivalence classes $H\left(h_{x}\right) \triangleq\left\{g \in H: g_{x}=h_{x}\right\}$. Consider the subsample $x^{\prime}=\left(x_{1}, \ldots, x_{m-1}\right)$, and the corresponding set of dichotomies $H_{x^{\prime}}$. For each $h_{x} \in H_{x}$, there is a projection
and denote projection operator $\pi: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S^{\prime}}$. We consider the two family of functions

$$
G_{1}=\left.H\right|_{S^{\prime}}=\{\pi \circ g: g \in G\}
$$

$$
G_{2}=\left\{g^{\prime} \in G_{1}:\left|\pi^{-1} \circ g^{\prime}\right|=2\right\} .
$$

It follows that there exists functions $g_{1}, g_{2} \in G$ such that $\left.g_{1}\right|_{S^{\prime}}=\left.g_{2}\right|_{S^{\prime}}$. In particular, $g_{1}\left(x_{m}\right) \neq g_{2}\left(x_{m}\right)$ but they agree on all other points $S^{\prime} \subset S$. It follows that $|G|=\left|G_{1}\right|+\left|G_{2}\right|$.

Since $G_{1} \subset G$, it follows that VC-dim $\left(G_{1}\right) \leqslant \operatorname{VC}-\operatorname{dim}(G) \leqslant d$, then by the definition of growth function and induction hypothesis,

$$
\left|G_{1}\right| \leqslant \Pi_{G_{1}}(m-1) \leqslant \sum_{i=0}^{d}\binom{m-1}{i} .
$$

Further, by definition of G_{2}, if a set $Z \subseteq S^{\prime}$ is shattered by G_{2}, then the set $Z \cup\left\{x_{m}\right\}$ is shattered by G. Therefore,

$$
\mathrm{VC}-\operatorname{dim}\left(G_{2}\right) \leqslant \mathrm{VC}-\operatorname{dim}(G)-1=d-1
$$

From the definition of growth function and induction hypothesis,

$$
\left|G_{2}\right| \leqslant \Pi_{G_{2}}(m-1) \leqslant \sum_{i=0}^{d-1}\binom{m-1}{i}
$$

Since $|G|=\left|G_{1}\right|+\left|G_{2}\right|$, we have

$$
|G| \leqslant \sum_{i=0}^{d}\binom{m-1}{i}+\sum_{i=0}^{d-1}\binom{m-1}{i}=\sum_{i=0}^{d}\left(\binom{m-1}{i}+\binom{m-1}{i-1}\right)=\sum_{i=0}^{d}\binom{m}{i} .
$$

Hence, the result holds for (m, d).
Corollary 2.5. Let H be a hypothesis set with VC-dim $(H)=d$, then

$$
\Pi_{H}(m) \leqslant\left(\frac{e m}{d}\right)^{d}=O\left(m^{d}\right), \text { for all } m \geqslant d
$$

Proof. For $m \geqslant d$ and $0 \leqslant i \leqslant d$, we have $\left(\frac{m}{d}\right)^{d-i} \geqslant 1$. Therefore,

$$
\Pi_{H}(m) \leqslant \sum_{i=0}^{d}\binom{m}{i} \leqslant \sum_{i=0}^{d}\binom{m}{i}\left(\frac{m}{d}\right)^{d-i}=\left(\frac{m}{d}\right)^{d} \sum_{i=0}^{d}\binom{m}{i}\left(\frac{d}{m}\right)^{i} .
$$

Since the summation of positive terms over $i \in\{0, \ldots, d\}$ can be upper bounded by summation over $i \in\{0, \ldots, m\}$, we get $\left(\frac{m}{d}\right)^{d} \sum_{i=0}^{d}\binom{m}{i}\left(\frac{d}{m}\right)^{i} \leqslant\left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m}\binom{m}{i}\left(\frac{d}{m}\right)^{i}$. From the Binomial theorem, we get $\sum_{i=0}^{m}\binom{m}{i}\left(\frac{d}{m}\right)^{i}=\left(1+\frac{d}{m}\right)^{m}$. Since $1+x \leqslant e^{x}$ for all $x \in \mathbb{R}$, we get $\left(1+\frac{d}{m}\right)^{m} \leqslant e^{d}$, and hence the result follows.

Remark 7. The growth function only exhibits two types of behavior,
(i) either VC-dim $(H)=d<\infty$, in which case $\Pi_{H}(m)=O\left(m^{d}\right)$,
(ii) or VC-dim $(H)=\infty$, in which case $\Pi_{H}(m)=2^{m}$ for all $m \in \mathbb{N}$.

Corollary 2.6 (VC-dimension generalization bounds). Let $H \subset\{-1,1\}^{x}$ be a family of functions with $V C$-dimension d. Then, for any $\delta>0$, with probability at least $1-\delta$

$$
R(h) \leqslant \hat{R}(h)+\sqrt{\frac{2 d \ln \frac{e m}{d}}{m}}+\sqrt{\frac{\ln \frac{1}{\delta}}{2 m}} \text {, for all } h \in H
$$

Remark 8. (i) Generalization risk is of the form $R(h) \leqslant \hat{R}(h)+O\left(\sqrt{\frac{\ln (m / d)}{m / d}}\right)$, which implies that the ratio $\frac{m}{d}$ is important.
(ii) Without the intermediate step of Rademacher complexity, a direct bound on generalization risk can be obtained as

$$
\hat{R}(h)+\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}} .
$$

