Lecture-11: Multi-class classification

1 Introduction

We will consider the following two classes of algorithms.

- 1. *Uncombined algorithms*: Specifically designed for the multi- class setting such as multi-class SVMs, decision trees, or multi-class boosting.
- 2. *Aggregated algorithms*: Based on reduction to binary classification and require training multiple binary classifiers.

As before, we will denote the input space by \mathfrak{X} the output space by \mathfrak{Y} , and unknown distribution by $\mathcal{D} \in \mathcal{M}(\mathfrak{X})$ over input space \mathfrak{X} according to which input points are drawn. We will consider the following two multi-class cases.

- 1. *Mono-label case:* The output space \mathcal{Y} is a finite set of classes marked $\mathcal{Y} = \{0, ..., M 1\}$ without any loss of generality. Each example in this case, is labeled with a single class.
- 2. *Multi-label case:* The output space $\mathcal{Y} = \{-1, +1\}^k$ is binary vector. Each example in this case, can be labeled with several classes. The positive components of a vector in $\{-1, +1\}^k$ indicate the classes associated with an example. For example, text documents can be labeled with several different relevant topics, e.g., sports, business, and society.

The learner receives a labeled sample $S \in (\mathfrak{X} \times \mathfrak{Y})^m$ with $x \in \mathfrak{X}^m$ drawn *i.i.d.* according to \mathfrak{D} , and $y_i = c(x_i)$ for all $i \in [m]$, where $c : \mathfrak{X} \to \mathfrak{Y}$ is the true concept. Thus, we consider a deterministic scenario, which can be straightforwardly extended to a stochastic one that admits a distribution over $\mathfrak{X} \times \mathfrak{Y}$.

Definition 1.1 (zero-one loss function). We define **zero-one loss function** $d : \mathcal{Y} \times \mathcal{Y}$ for a hypothesis $h : \mathcal{X} \to \mathcal{Y}$ as

$$d(h(x), y) \triangleq \mathbb{1}_{\{h(x) \neq y\}}.$$

Definition 1.2 (Hamming distance). We define **Hamming distance** $d_H : \mathcal{Y} \times \mathcal{Y}$ for a hypothesis $h : \mathcal{X} \to \mathcal{Y}$ for any output space $\mathcal{Y} \subseteq R^k$ as

$$d_H(h(x),y) \triangleq \sum_{\ell=1}^{\kappa} \mathbb{1}_{\{h(x)_\ell \neq y_\ell\}}.$$

Remark 1. Empirical error for any loss function *d*, hypothesis *h*, and labeled sample *S*, is given as $\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} d(h(x_i), y_i)$.

Challenges in multi-class setting.

- 1. Computational challenges for large *M*,*k*
- 2. Unbalanced classes, and poor performance guarantees on classes with small training sample, and large generalization error due to classes with large training sample
- 3. Hierarchical relationship between classes

2 Bayesian framework

We assume that the *i.i.d.* sample comes from a known distribution \mathcal{D}_y if the data has label $y \in \mathcal{Y}$. We further assume that a prior probability distribution on data coming from each class is $\pi \in \mathcal{M}(\mathcal{Y})$. For a hypothesis $h : \mathcal{X} \to \mathcal{Y}$, the loss for a labeled example (x_i, y_i) is given by $d(h(x_i), y_i)$. We observe that each hypothesis $h : \mathcal{X} \to \mathcal{Y}$ is equivalently characterized by the partition of input spaces \mathcal{X} given by $(E_y, y \in \mathcal{Y})$ where $E_y \triangleq \{x \in \mathcal{X} : h(x) = y\} = h^{-1}\{y\}$.

Definition 2.1 (Bayesian loss). Bayesian loss function $d : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ for a hypothesis $h : \mathcal{X} \to \mathcal{Y}$ and a labeled samples (x, y) is defined as

$$d(h(x),y) \triangleq \sum_{z \in \mathcal{Y}} c_{zy} \mathbb{1}_{\{h(x)=z\}} = \sum_{z \in \mathcal{Y}} c_{zy} \mathbb{1}_{E_z}(x).$$

We assume the cost of correct decision is smaller than incorrect decisions and hence $c_{yy} < c_{zy}$ for all possible classes $y, z \in \mathcal{Y}$.

Definition 2.2 (Bayes risk). Bayes risk $R: \mathcal{Y}^{\mathcal{X}} \to \mathbb{R}_+$ is defined for each hypothesis $h \in \mathcal{X} \to \mathcal{Y}$ as

$$R(h) \triangleq \mathbb{E}[d(h(X), c(X))]$$

for Bayesian loss function *d* and sample *X* with prior probability distribution of π on being from one of the *M* classes, and distribution \mathcal{D}_y for a sample with label $y \in \mathcal{Y}$.

Problem 1. Find the Bayesian optimal hypothesis *h* that minimizes the Bayesian risk *R*.

Remark 2. Denoting the density of example *x* with label *y* as $\frac{d\mathcal{D}_y}{dx} = f(x \mid H_y)$, we can write the density of example *x* as $f(x) \triangleq \frac{\sum_{y \in \mathcal{Y}} d\mathcal{D}_y(x)\pi_y}{dx}$. Defining the conditional probability of label *y* given example *x* as $P(H_y \mid x) \triangleq \frac{d\mathcal{D}_y(x)\pi_y}{f(x)dx}$, we can write the infinitesimal probability of example *x* being generated from class *y* as

$$d\mathcal{D}_y(x)\pi_y = f(x \mid H_y)\pi_y dx = f(x)P(H_y \mid x)dx.$$

Defining the mean cost of hypothesis *h* declaring label *z* for an example *x* as $c_z(x) \triangleq \sum_{y \in \mathcal{Y}} c_{zy} P(H_y \mid x)$, we can write the Bayes risk as

$$R(h) = \sum_{y \in \mathcal{Y}} \pi_y \sum_{z \in \mathcal{Y}} c_{zy} \int_{x \in \mathcal{X}} \mathbb{1}_{E_z}(x) f(x \mid H_y) dx = \int_{x \in \mathcal{X}} dx f(x) \sum_{z \in \mathcal{Y}} \mathbb{1}_{E_z}(x) \sum_{y \in \mathcal{Y}} c_{zy} P(H_y \mid x) = \int_{x \in \mathcal{X}} dx f(x) \sum_{z \in \mathcal{Y}} \mathbb{1}_{E_z}(x) c_z(x) dx f(x) = \int_{x \in \mathcal{X}} dx f(x) \sum_{z \in \mathcal{Y}} \mathbb{1}_{E_z}(x) dx f(x) \sum_{z \in \mathcal{Y}} \mathbb{1}_{E_z}(x) dx f(x) \sum_{z \in \mathcal{Y}} \mathbb{1}_{E_z}(x) dx f(x) dx = \int_{x \in \mathcal{X}} \frac{1}{2} \int_{x \in \mathcal{X}} \frac{1}{2}$$

Finding the Bayes optimal hypothesis is identical to finding regions $(E_z, z \in \mathcal{Y})$ such that the cost $c_z(x)$ is minimum for each $x \in \mathcal{X}$. That is, we find

$$E_z \triangleq \left\{ x \in \mathfrak{X} : c_z(x) = \min_{w \in \mathcal{Y}} c_w(x) \right\}.$$

Definition 2.3. The Bayes optimal hypothesis is $h_B(x) \triangleq \arg\min \{c_w(x) : w \in \mathcal{Y}\}.$

2.1 Special Bayesian loss case

We consider the special Bayesian loss case when cost of correct classification is zero, and incorrect classification is unity for all incorrect classifications. That is, $d(h(x), y) = \mathbb{1}_{\{y \neq h(x)\}}$ for any hypothesis h and hence $c_{zy} = \mathbb{1}_{\{z \neq y\}}$ for all labels $z, y \in \mathcal{Y}$. For this case, the mean cost of hypothesis h declaring label z for an example x is

$$c_z(x) = \sum_{y \in \mathcal{Y}} c_{zy} P(H_y \mid x) = \sum_{y \neq z} P(H_y \mid x) = 1 - P(H_z \mid x).$$

Remark 3. For the zero-one loss, the optimal Bayesian hypothesis is $h_B(x) \triangleq \arg \max \{P(H_z \mid x) : z \in \mathcal{Y}\}$ the one that maximizes the *a posteriori* probability of observing a label given an example *x*.

Definition 2.4. The hypothesis that maximizes the *a posteriori* probability of observing a label given an example *x*, is called a **MAP hypothesis** and is given by

$$h_{\mathrm{MAP}}(x) \triangleq \arg\max\left\{P(H_z \mid x) : z \in \mathcal{Y}\right\} = \arg\max\left\{f(x \mid H_z)\pi_z : z \in \mathcal{Y}\right\}.$$

Remark 4. If all labels are equally likely *a priori*, then $h_{MAP}(x) = \arg \max \{f(x \mid H_z) : z \in \mathcal{Y}\}$ that is the hypothesis maximizes the likelihood of observing example *x*.

Definition 2.5. The hypothesis that maximizes the likelihood of observing an example *x*, is called an **ML hypothesis** and is given by

$$h_{\mathrm{ML}}(x) \triangleq \arg \max \{ f(x \mid H_z) : z \in \mathcal{Y} \}.$$

Example 2.6 (Gaussian distribution). Consider the multi-class classification case when the output space $\mathcal{Y} = \{0, ..., M - 1\}$, and the density $f(x \mid H_y)$ of example $x \in \mathcal{X} = \mathbb{R}^d$ for label $y \in \mathcal{Y}$ is a Gaussian distribution with mean vector $\mu_y \in \mathbb{R}^d$ and variance matrix K_y . The maximum likelihood (ML) classifier is given by

$$h_{\mathrm{ML}}(x) = \arg \max \left\{ \exp \left(-\frac{1}{2} (x - \mu_y)^T K_y^{-1} (x - \mu_y) \right) : y \in \mathcal{Y} \right\}.$$

When $K_y = \sigma^2 I$ for all $y \in \mathcal{Y}$, we get

$$h_{\mathrm{ML}}(x) = \arg \max \left\{ - \left\| x - \mu_y \right\|^2 : y \in \mathcal{Y} \right\} = \arg \min \left\{ \left\| x - \mu_y \right\| : y \in \mathcal{Y} \right\}.$$

This is called the **minimum distance classifier**.

Example 2.7 (Communication over Gaussian channels). Consider a communication channel with additive white Gaussian noise pair $N : \Omega \to \mathbb{R}^2$ with independent components having mean zero and variance σ^2 . For an input pair $y \in (\{0,1\}^2$, the output pair $x \in \mathbb{R}^2$ is given by $(x^1, x^2) = (y^1 + N^1, y^2 + N^2)$. Given the output x, one wants to classify input y. The minimum distance classifier gives for each output $x \in \mathbb{R}^2$,

$$h(x) \triangleq \arg\min\left\{ (x^1 - y^1)^2 + (x^2 - y^2)^2 : (y^1, y^2) \in \{0, 1\} \times \{0, 1\} \right\}.$$

3 Machine learning framework

We may know the distribution \mathcal{D}_y for each label $y \in \mathcal{Y}$. Though, we may know or assume the prior distribution π . The *posterior* distribution given a labeled sample *S* of *m i.i.d.* examples, is defined as

$$Q_{y} \triangleq P(H_{y} \mid S).$$

For this measure, we can write the loss function as

$$R(h) \triangleq \mathbb{E}_Q d(h(x), y).$$

Theorem 3.1. With probability greater than $1 - \delta$, we have

$$R(h) \leqslant \hat{R}(h) + \left(\frac{D(Q||P) + \ln \frac{m}{\delta}}{2m - 1}\right)^{\frac{1}{2}},$$

where KL distance $D(Q||P) \triangleq \sum_{x \in \mathcal{X}} Q(x) \ln \frac{Q(x)}{P(x)}$ if $\operatorname{supp}(Q) \subseteq \operatorname{supp}(P)$ and infinite otherwise.