
Lecture-11: Multi-class classification

1 Introduction

We will consider the following two classes of algorithms.
1. Uncombined algorithms: Specifically designed for the multi- class setting such as multi-class SVMs,

decision trees, or multi-class boosting.
2. Aggregated algorithms: Based on reduction to binary classification and require training multiple

binary classifiers.
As before, we will denote the input space by X the output space by Y, and unknown distribution by D∈
M(X) over input space X according to which input points are drawn. We will consider the following
two multi-class cases.

1. Mono-label case: The output space Y is a finite set of classes marked Y= {0, ..., M − 1} without any
loss of generality. Each example in this case, is labeled with a single class.

2. Multi-label case: The output space Y= {−1,+1}k is binary vector. Each example in this case, can be
labeled with several classes. The positive components of a vector in {−1,+1}k indicate the classes
associated with an example. For example, text documents can be labeled with several different
relevant topics, e.g., sports, business, and society.

The learner receives a labeled sample S ∈ (X× Y)m with x ∈ Xm drawn i.i.d. according to D, and yi =
c(xi) for all i ∈ [m], where c : X → Y is the true concept. Thus, we consider a deterministic scenario,
which can be straightforwardly extended to a stochastic one that admits a distribution over X× Y.

Definition 1.1 (zero-one loss function). We define zero-one loss function d : Y× Y for a hypothesis
h : X→ Y as

d(h(x),y)≜ 1{h(x) ̸=y}.

Definition 1.2 (Hamming distance). We define Hamming distance dH : Y×Y for a hypothesis h : X→ Y

for any output space Y⊆ Rk as

dH(h(x),y)≜
k

∑
ℓ=1

1{h(x)ℓ ̸=yℓ}.

Remark 1. Empirical error for any loss function d, hypothesis h, and labeled sample S, is given as R̂(h) =
1
m ∑m

i=1 d(h(xi),yi).

Challenges in multi-class setting.
1. Computational challenges for large M,k
2. Unbalanced classes, and poor performance guarantees on classes with small training sample, and

large generalization error due to classes with large training sample
3. Hierarchical relationship between classes

2 Bayesian framework

We assume that the i.i.d. sample comes from a known distribution Dy if the data has label y ∈ Y. We
further assume that a prior probability distribution on data coming from each class is π ∈M(Y). For a
hypothesis h : X→ Y, the loss for a labeled example (xi,yi) is given by d(h(xi),yi). We observe that each
hypothesis h : X→ Y is equivalently characterized by the partition of input spaces X given by (Ey,y ∈ Y)

where Ey ≜ {x ∈ X : h(x) = y} = h−1 {y}.

Definition 2.1 (Bayesian loss). Bayesian loss function d : Y× Y→ R+ for a hypothesis h : X→ Y and a
labeled samples (x,y) is defined as

d(h(x),y)≜ ∑
z∈Y

czy1{h(x)=z} = ∑
z∈Y

czy1Ez(x).
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We assume the cost of correct decision is smaller than incorrect decisions and hence cyy < czy for all
possible classes y,z ∈ Y.

Definition 2.2 (Bayes risk). Bayes risk R : YX → R+ is defined for each hypothesis h ∈ X→ Y as

R(h)≜ E[d(h(X), c(X))],

for Bayesian loss function d and sample X with prior probability distribution of π on being from one of
the M classes, and distribution Dy for a sample with label y ∈ Y.

Problem 1. Find the Bayesian optimal hypothesis h that minimizes the Bayesian risk R.

Remark 2. Denoting the density of example x with label y as dDy
dx = f (x | Hy), we can write the density

of example x as f (x) ≜ ∑y∈Y dDy(x)πy
dx . Defining the conditional probability of label y given example x

as P(Hy | x) ≜ dDy(x)πy
f (x)dx , we can write the infinitesimal probability of example x being generated from

class y as
dDy(x)πy = f (x | Hy)πydx = f (x)P(Hy | x)dx.

Defining the mean cost of hypothesis h declaring label z for an example x as cz(x)≜ ∑y∈Y czyP(Hy | x),
we can write the Bayes risk as

R(h) = ∑
y∈Y

πy ∑
z∈Y

czy

∫
x∈X

1Ez(x) f (x | Hy)dx =
∫

x∈X
dx f (x) ∑

z∈Y
1Ez(x) ∑

y∈Y
czyP(Hy | x) =

∫
x∈X

dx f (x) ∑
z∈Y

1Ez(x)cz(x).

Finding the Bayes optimal hypothesis is identical to finding regions (Ez,z ∈ Y) such that the cost cz(x)
is minimum for each x ∈ X . That is, we find

Ez ≜
{

x ∈ X : cz(x) = min
w∈Y

cw(x)
}

.

Definition 2.3. The Bayes optimal hypothesis is hB(x)≜ argmin{cw(x) : w ∈ Y}.

2.1 Special Bayesian loss case

We consider the special Bayesian loss case when cost of correct classification is zero, and incorrect
classification is unity for all incorrect classifications. That is, d(h(x),y) = 1{y ̸=h(x)} for any hypothesis h
and hence czy = 1{z ̸=y} for all labels z,y ∈ Y. For this case, the mean cost of hypothesis h declaring label
z for an example x is

cz(x) = ∑
y∈Y

czyP(Hy | x) = ∑
y ̸=z

P(Hy | x) = 1 − P(Hz | x).

Remark 3. For the zero-one loss, the optimal Bayesian hypothesis is hB(x)≜ argmax{P(Hz | x) : z ∈ Y}
the one that maximizes the a posteriori probability of observing a label given an example x.

Definition 2.4. The hypothesis that maximizes the a posteriori probability of observing a label given an
example x, is called a MAP hypothesis and is given by

hMAP(x)≜ argmax{P(Hz | x) : z ∈ Y} = argmax{ f (x | Hz)πz : z ∈ Y} .

Remark 4. If all labels are equally likely a priori, then hMAP(x) = argmax{ f (x | Hz) : z ∈ Y} that is the
hypothesis maximizes the likelihood of observing example x.

Definition 2.5. The hypothesis that maximizes the likelihood of observing an example x, is called an
ML hypothesis and is given by

hML(x)≜ argmax{ f (x | Hz) : z ∈ Y} .
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Example 2.6 (Gaussian distribution). Consider the multi-class classification case when the output
space Y = {0, . . . , M − 1}, and the density f (x | Hy) of example x ∈ X = Rd for label y ∈ Y is a
Gaussian distribution with mean vector µy ∈ Rd and variance matrix Ky. The maximum likelihood
(ML) classifier is given by

hML(x) = argmax
{

exp
(
− 1

2
(x − µy)

TK−1
y (x − µy)

)
: y ∈ Y

}
.

When Ky = σ2 I for all y ∈ Y, we get

hML(x) = argmax
{
−
∥∥x − µy

∥∥2 : y ∈ Y
}
= argmin

{∥∥x − µy
∥∥ : y ∈ Y

}
.

This is called the minimum distance classifier.

Example 2.7 (Communication over Gaussian channels). Consider a communication channel with
additive white Gaussian noise pair N : Ω → R2 with independent components having mean zero
and variance σ2. For an input pair y ∈ ({0,1}2, the output pair x ∈ R2 is given by (x1, x2) = (y1 +
N1,y2 + N2). Given the output x, one wants to classify input y. The minimum distance classifier
gives for each output x ∈ R2,

h(x)≜ argmin
{
(x1 − y1)2 + (x2 − y2)2 : (y1,y2) ∈ {0,1} × {0,1}

}
.

3 Machine learning framework

We may know the distribution Dy for each label y ∈ Y. Though, we may know or assume the prior
distribution π. The posterior distribution given a labeled sample S of m i.i.d. examples, is defined as

Qy ≜ P(Hy | S).

For this measure, we can write the loss function as

R(h)≜ EQd(h(x),y).

Theorem 3.1. With probability greater than 1 − δ, we have

R(h)⩽ R̂(h) +
(D(Q∥P) + ln m

δ

2m − 1

) 1
2
,

where KL distance D(Q∥P)≜ ∑x∈X Q(x) ln Q(x)
P(x) if supp(Q) ⊆ supp(P) and infinite otherwise.
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