
Lecture-12: Multi-class classification: Generalization
bounds

1 Generalization bounds: mono-label case

In the binary setting, classifiers are often defined based on the sign of a scoring function. In the multi-
class setting, a hypothesis is defined based on a scoring function h : X× Y→ R. The label associated to
point x is the one resulting in the largest score h(x,y), which defines the following mapping from X to
Y

x 7→ argmax{h(x,y) : y ∈ Y} .

Definition 1.1. The margin ρh(x,y) for a scoring function h : X→ Y at a labeled example (x,y) is defined
as

ρh(x,y)≜ h(x,y)− max
y ̸=y′

h(x,y′).

A scoring function h misclassifies an example x iff ρh(x,y)⩽ 0. For any ρ > 0, we can define the empir-
ical margin loss of a hypothesis h for multi-class classification as

R̂S,ρ(h) =
1
m

m

∑
i=1

Φρ(ρh(xi,yi)),

where Φρ is the margin loss function defined as Φρ(x) = 1{x⩽0} + (1 − x
ρ )1{0⩽x⩽ρ}.

Remark 1. Since Φρ(x)⩽ 1{x⩽ρ}, we obtain R̂S,ρ(h)⩽ 1
m ∑m

i=11{ρh(xi ,yi)⩽ρ}.

Lemma 1.2. Let F1, . . . ,FL be L hypothesis sets in RX, and let G≜ {max{h1, . . . , hL} : hi ∈ Fi, i ∈ [L]}. Then,
for any sample S of size m, the empirical Rademacher complexity of G can be upper bounded as

R̂S(G)⩽
L

∑
ℓ=1

R̂S(Fℓ).

Proof. Let S = (x1, . . . , xm) ∈ Xm be a sample of size m. We show this for L = 2, and then it follows
inductively. We observe that for h1 ∈ F1, h2 ∈ F2, we have h1 ∨ h2 =

1
2 (h1 + h2 + |h1 − h2|). Therefore,

we can write from the definition of Rademacher complexity, that

R̂S(G) =
1
m

Eσ[ sup
h1∈F1,h2∈F2

m

∑
i=1

σi max{h1(xi), h2(xi)}]

=
1

2m
Eσ[ sup

h1∈F1,h2∈F2

m

∑
i=1

σi(h1 + h2 + |h1 − h2|)(xi)]

⩽
1
2
(R̂S(F1) + R̂S(F2)) +

1
2m

Eσ[ sup
h1∈F1,h2∈F2

m

∑
i=1

σi |h1 − h2| (xi)].

The result follows from Talagrand’s Lemma since x 7→ |x| is 1-Lipschitz.

Definition 1.3. For any family H of hypotheses mapping X× Y→ R, we define

Π1(H)≜ {x 7→ h(x,y) : y ∈ Y, h ∈H} .

Remark 2. Recall that for a family of functions G ⊆ [0,1]Z and any i.i.d. sample S ∈ Zm, we have with
probability greater than or equal to 1 − δ, for any function g ∈ G

Eg(z)⩽
1
m

m

∑
i=1

g(zi) + 2Rm(G) +

√
ln 1

δ

2m
.
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This follows from the application of McDiarmid’s inequality. In addition, recall that the empirical
Rademacher complexity of family G for σ : Ω → {−1,1}m i.i.d. Rademacher random sequence, is given
by

Rm(G)≜
1
m

Eσ

[
sup
g∈G

m

∑
i=1

σig(zi)
]
.

Theorem 1.4 (Margin bound for multi-class classification). Let H ⊆ RX×Y be a hypothesis set with Y =
[k]. Fix ρ > 0. Then, for any δ > 0, with probability at least 1 − δ, the following multi-class classification
generalization bound holds for all h ∈H

R(h)⩽ R̂S,ρ(h) +
4k
ρ
Rm(Π1(H)) +

√
ln 1

δ

2m
.

Proof. Let us define the margin ρθ,h(x,y)≜miny′∈Y[h(x,y)− h(x,y′)+ θ1{y=y′}] for some constant θ > 0.
Then, we observe that

ρθ,h(x,y)⩽ min
y′ ̸=y

[h(x,y)− h(x,y′) + θ1{y=y′}] = ρh(x,y).

Therefore, it follows that 1{ρh(x,y)⩽0} ⩽1{ρθ,h(x,y)⩽0}. Since 1{u⩽0} ⩽Φρ(u) for all u ∈R, we have R(h) =

E1{ρh(x,y)⩽0}⩽E1{ρθ,h(x,y)⩽0}⩽EΦρ(ρθ,h(x,y)). Defining the family of functions H̃≜
{
(x,y) 7→ ρθ,h(x,y) : h ∈H

}
and family of composition of functions H̃≜

{
Φρ ◦ h̃ : h̃ ∈ H̃

}
. Applying the remark to family H̃, we get

R(h)⩽ EΦρ(ρθ,h(x,y))⩽
1
m

m

∑
i=1

Φρ(ρθ,h(xi,yi)) + 2Rm(H̃) +

√
ln 1

δ

2m
.

Fixing θ = 2ρ, we observe that ρθ,h(xi,yi) = ρh(xi,yi) if ρh(xi,yi) < 0, and ρθ,h(xi,yi) = 2ρ ⩽ ρh(xi,yi)
otherwise. This implies that

Φρ(ρθ,h(xi,yi)) =1{ρθ,h(xi ,yi)⩽0}+(1−
ρθ,h(xi,yi)

ρ
)1{0⩽ρθ,h(xi ,yi)⩽ρ}=1{ρθ,h(xi ,yi)⩽0}=1{ρh(xi ,yi)⩽0} =Φρ(ρh(xi,yi)).

From Talagrand’s Lemma, we have Rm(H̃)⩽ 1
ρRm(H̃) since Φρ is 1

ρ -Lipschitz function. Therefore, with
probability at least 1 − δ, we have for all h ∈H

R(h)⩽ R̂S,ρ(h) +
2
ρ
Rm(H̃) +

√
ln 1

δ

2m
.

It suffices to show that Rm(H̃)⩽ 2kRm(Π1(H)). To this end, we write

Rm(H̃) =
1
m

ES,σ

[
sup
h∈H

m

∑
i=1

σi
(
h(xi,yi)− max

y
(h(xi,y)− 2ρ1{y=yi})

)]
⩽

1
m

ES,σ

[
sup
h∈H

m

∑
i=1

σih(xi,yi)
]
+

1
m

ES,σ

[
sup
h∈H

m

∑
i=1

σi max
y

(h(xi,y)− 2ρ1{y=yi})
]
.

We bound both the terms on the right hand side of the above equation individually. Defining ϵi ≜
21{yi=y} − 1 ∈ {−1,1}, and observing that σiϵi and σi have identical distribution, we can write the first
term as

1
2m

ES,σ

[
sup
h∈H

m

∑
i=1

∑
y∈Y

σih(xi,y)(ϵi + 1)
]
⩽ ∑

y∈Y

1
2m

ES,σ

[
sup
h∈H

m

∑
i=1

σih(xi,y)(ϵi + 1)
]
⩽ kRm(Π1(H)).

We apply Lemma ?? to the second term, to obtain

1
m

ES,σ

[
sup
h∈H

m

∑
i=1

σi max
y

(h(xi,y)− 2ρ1{y=yi})
]
⩽ ∑

y∈Y

1
m

ES,σ

[
sup
h∈H

m

∑
i=1

σi(h(xi,y)− 2ρ1{y=yi})
]

= ∑
y∈Y

1
m

ES,σ sup
h∈H

m

∑
i=1

σi(h(xi,y)⩽ kRm(Π1(H)).

Remark 3. Larger margin means smaller second term and larger first term. That is, there is a trade-off
between empirical error and complexity.
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1.1 Rademacher complexity of family Π1(H)

Let K : X× X → R be a PDS kernel and let Φ : X → H be the associated feature map. In multi-class
classification, a kernel-based hypothesis is based on k weight vectors w1, . . . ,wk ∈ H, where each weight
vector wi defines a scoring function x 7→ ⟨wi,Φ(x)⟩ for each i ∈ [k] and the class associated to point x ∈X

is given by argmaxy∈Y
〈
wy,Φ(x)

〉
. Let W ≜

[
w1 · · · wk

]T and for p ⩾ 1 we define the LH,p group
norm of W as

∥W∥H,p ≜
( k

∑
i=1

∥wi∥
p
H

) 1
p
.

For any p ⩾ 1, the family of kernel-bases hypotheses under consideration is

HK,p ≜
{
(x,y) 7→

〈
wy,Φ(x)

〉
: ∥W∥H,p ⩽ Λ

}
.

Proposition 1.5 (Rademacher complexity of multi-class kernel-based hypotheses). Let K : X×X→ R

be a PDS kernel and let Φ : X→ H be the associated feature mapping. Assume that there exists r > 0 such that
K(x, x)⩽ r2 for all x ∈ X. Then, for any m ∈ N, we have

Rm(Π1(HK,p))⩽

√
r2Λ2

m
.

Proof. Let S ∈Xm be an i.i.d. sample. We observe that for each weight vector, we have ∥wi∥H ⩽ ∥W∥H,p
for all i ∈ [k]. Thus, for any W ∈HK,p, we have wi ⩽ Λ for all i ∈ [k]. Therefore, form Cauchy-Schwarz
and Jensen’s inequality, we have

Rm(Π1(HK,p)) =
1
m

ES,σ

[
sup

y∈Y,∥W∥⩽Λ

〈
wy,

m

∑
i=1

σiΦ(xi)

〉]
⩽

Λ
m

ES,σ

∥∥∥∥∥ m

∑
i=1

σiΦ(xi)

∥∥∥∥∥
H

⩽
Λ
m

(
ES,σ

∥∥∥∥∥ m

∑
i=1

σiΦ(xi)

∥∥∥∥∥
2

H

) 1
2
.

Since the Rademacher random sequence σ is i.i.d. zero mean, we get ES,σ ∥∑m
i=1 σiΦ(xi)∥2

H
=ES ∑m

i=1 ∥Φ(xi)∥2
H =

ES ∑m
i=1 K(xi, xi)⩽ mr2, and the result follows.

Corollary 1.6 (Margin bound for multi-class classification with kernel-based hypotheses). Let K :
X× X → R be a PDS kernel and let Φ : X → H be an associated feature map. Assume that there exists r > 0
such that K(x, x)⩽ r2 for all x ∈ X. Fix ρ > 0. Then, with probability at least 1 − δ for all h ∈HK,p

R(h)⩽ R̂S,ρ(h) + 4k

√
r2Λ2

ρ2m
+

√
ln 1

δ

2m
.
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