
Lecture-02: Probability Function

1 Indicator Functions

Definition 1.1 (Indicator functions). Consider a random experiment over an outcome space Ω and an
event space F. The indicator of an event B ∈ F is denoted by

1B(ω) =

{
1, ω ∈ B,
0, ω /∈ B.

Example 1.2. Consider a roll of dice that has an outcome space Ω = [6] and event space F = P(Ω). For an
event O ≜ {1,3,5} that represents odd outcomes for dice roll, we observe that 1O(1) = 1 and 1O(2) = 0.

Example 1.3. Consider N trials of a random experiment over outcome space Ω and the event space F. Let
ωn ∈ Ω denote the outcome of the experiment of the nth trial. For each event B ∈ F, we define an indicator
function

1B(ωn) =

{
1, ωn ∈ B,
0, ωn /∈ B.

For any event B ∈ F, the number of times the event B occurs in N trials is denoted by N(B) = ∑N
n=11B(ωn).

We denote the relative frequency of an event A in N trials by N(B)
N .

Definition 1.4 (Disjoint events). Let (Ω,F) be a pair of sample and event space, and a sequence of events
A ∈ FN. The sequence is mutually disjoint if An ∩ Am = ∅ for any m ̸= n ∈ N. If ∪n∈N An = Ω, then A is
a partition of sample space Ω.

Exercise 1.5. Consider the sample space Ω = {H, T}N and event space F = σ(An : n ∈ N) where
An ≜ {ω ∈ Ω : ωi = H for some i ∈ [n]}. Construct a sequence of non-trivial disjoint events.

Exercise 1.6. Let (Ω,F) be a pair of sample and event space. For any sequence of events A ∈ FN,
show that

1. 1∩n∈N An(ω) = ∏n∈N1An(ω),

2. 1∪n∈N An(ω) = ∑n∈N1An(ω) if the sequence A is mutually disjoint.

Example 1.7. We observe the following properties of the relative frequency.

1. For all events B ∈ F, we have 0 ⩽ N(B)
N ⩽ 1. This follows from the fact that 0 ⩽ N(B)⩽ N for any event

B ∈ F.

2. Let A ∈ FN be a sequence of mutually disjoint events, then N(∪i∈N Ai)
N = ∑i∈N

N(Ai)
N . This follows from

the fact that for mutually disjoint event sequence A, we have

1∪i∈N Ai (ωn) = ∑
i∈N

1Ai (ωn).
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3. For the certain event Ω, we have N(Ω)
N = 1. This follows from the fact that N(Ω) = N.

Since the relative frequency is positive and bounded, it may converge to a real number as N grows very
large, and the limit limN→∞

N(B)
N may exist.

2 Probability axioms

Inspired by the relative frequency, we list the following axioms for a probability function P : F → [0,1].

Axiom 2.1 (Axioms of probability). We define a probability measure on sample space Ω and event space
F by a function P : F → [0,1] which satisfies the following axioms.

Non-negativity: For all events B ∈ F, we have P(B)⩾ 0.

σ-additivity: For an infinite sequence A∈FN of mutually disjoint events, we have P(∪i∈N Ai) =∑i∈N P(Ai).

Certainty: P(Ω) = 1.

Definition 2.2 (Probability space). A sample space Ω, an event space F⊆P(Ω), and a probability measure
P : F → [0,1], together define a probability space (Ω,F, P).

3 Properties of Probability

Theorem 3.1. For any probability space (Ω,F, P), we have the following properties of probability measure.

impossibility: P(∅) = 0.

finite additivity: For mutually disjoint events A ∈ Fn, we have P(∪n
i=1 Ai) = ∑n

i=1 P(Ai).

monotonicity: If events A, B ∈ F such that A ⊆ B, then P(A)⩽ P(B).

inclusion-exclusion: For any events A, B ∈ F, we have P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

continuity: For a sequence of events A ∈ FN) such that limn An exists, we have P(limn→∞ An) = limn→∞ P(An).

Proof. We consider the probability space (Ω,F, P).

1. We take disjoint events E ∈ FN where E1 = Ω and Ei = ∅ for i ⩾ 2. It follows that ∪i∈NEi = Ω and E is
a collection of mutually disjoint events. From the countable additivity axiom of probability, it follows
that

P(Ω) = P(Ω) + ∑
i⩾2

P(Ei).

Since P(Ei)⩾ 0, it implies that P(∅) = 0.

2. We see that finite additivity follows from the countable additivity. We consider disjoint events A1, . . . , An,
and take Ai = ∅ for all i > n. It follows that the sequence of sets A ∈ FN is mutually disjoint, and
since P(∅) = 0, it follows that

P(∪n
i=1 Ai) = P(∪i∈N Ai) =

n

∑
i=1

P(Ai) + ∑
i>n

P(∅) =
n

∑
i=1

P(Ai).

3. For events A, B ∈ F such that A ⊆ B, we can take disjoint events E1 = A and E2 = B \ A. From closure
under complements and intersection, it follows that E2 ∈ F. From non-negativity of probability, we
have P(E2)⩾ 0. Finally, the result follows from finite additivity of disjoint events

P(B) = P(E1 ∪ E2) = P(E1) + P(E2)⩾ P(A).
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4. For any two events A, B ∈ F, we can write the following events as disjoint unions

A = (A \ B) ∪ (A ∩ B), B = (B \ A) ∪ (A ∩ B), A ∪ B = (A \ B) ∪ (A ∩ B) ∪ (B \ A).

The result follows from the finite additivity of probability of disjoint events.

5. To show the continuity of probability in events, we first need to understand the limits of events. We
show the continuity of probability in the next section.

Example 3.2. Consider a single coin tosse with the sample space Ω = {H, T}, an event space F = P(Ω).
The probability measure P : F → [0,1] is defined as

P(∅) = 0, P({H}) = p P({T}) = 1 − p P({H, T}) = 1.

Can you verify that P is a probability function?

Example 3.3. Consider N coin tosses with the sample space Ω = {H, T}[N], an event space F = P(Ω). For
each outcome ω ∈ Ω, we define the number of heads as NH(ω)≜ ∑n∈[N]1{H}(ωn) and the number of tails
as NT(ω)≜ N − NH(ω). The probability measure P : F → [0,1] is defined for each event A ∈ F as

P(A)≜ ∑
ω∈A

pNH(ω)(1 − p)NT(ω).

Can you verify that P is a probability function?

4 Limits of Sets

Definition 4.1 (Limits of monotonic sets). For a sequence of non-decreasing sets (An : n ∈ N), we can
define the limit as

lim
n→∞

An ≜ ∪n∈N An.

Similarly, for a sequence of non-increasing sets (An : n ∈ N), we can define the limit as

lim
n→∞

An ≜ ∩n∈N An.

Example 4.2 (Monotone sets). Consider a monotonically increasing sequence a ∈ RN defined as an ≜ − 1
n

for all n ∈ N, which converges to the limit 0. We consider monotone sequence of sets A, B ∈ B(R)N de-
fine as An ≜ [−2,− 1

n ] and Bn ≜ [−2, 1
n ] for all n ∈ N, which are monotonically increasing and decreasing

respectively. We can verify the following limits

lim
n

An = ∪n∈N An = [−2,0), lim
n

Bn = ∩n∈NBn = [−2,0].

Definition 4.3 (Limits of sets). For a sequence of sets (An : n ∈ N), we can define the limit superior and
limit inferior of this sequence of sets as

limsup
n→∞

An ≜ ∩n∈N ∪m⩾n Am = lim
n→∞

∪m⩾n Am, liminf
n→∞

An ≜ ∪n∈N ∩m⩾n Am = lim
n→∞

∩m⩾n Am.

Lemma 4.4. For a sequence of sets (An : n ∈ N), we have liminfn→∞ An ⊆ limsupn→∞ An.
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Proof. For each n ∈ N, we define En ≜ ∪m⩾n Am and Fn ≜ ∩m⩾n Am. Consider a fixed n, then F1, F2, . . . , Fn ⊆
An, and Fm ⊆ Am for all m ⩾ n. Therefore, we can write ∪n∈NFn ⊆ ∪m⩾n Am for each n ∈ N, and hence the
result follows.

Definition 4.5. If the limit superior and limit inferior of any sequence of sets (An : n ∈ N) are equal, then
the sequence of sets has a limit A∞, which is defined as

A∞ ≜ lim
n→∞

An = limsup
n→∞

An = liminf
n→∞

An.

Example 4.6 (Sequence of sets with different limits). We consider sequence of sets (An = [−2, (−1)n + 1
n ] :

n ∈ N). It follows that Fn = ∩m⩾n Am = [−2,−1] and

En = ∪m⩾n Am =

{
[−2,1 + 1

n+1 ], n odd,
[−2,1 + 1

n ], n even.

We can verify the following limits

liminf
n

An = ∪n∈NFn = [−2,−1], limsup
n

An = ∩n∈NEn = [−2,1].

4.1 Proof of continuity of probability

Continuity for increasing sets. Let (An ∈F : n∈N) be a non-decreasing sequence of events, then limn→∞ An =
∪n∈N An. This implies that (P(An) : n ∈ N) is a non-negative non-decreasing bounded sequence, and
hence has a limit. It remains to show that limn→∞ P(An) = P(∪n∈N An). To this end, we observe that
(A1, A2 \ A1, . . . , An \ An−1) is a partition of the event An, and P(Ai \ Ai−1) = P(Ai) − P(Ai−1) for each
i ∈ N. From finite additivity of P for mutually disjoint events, we can write for each n ∈ N

P(An) = P(A1) +
n−1

∑
i=1

P(Ai+1 \ Ai) = P(A1) +
n−1

∑
i=1

(P(Ai+1)− P(Ai)).

From σ-additivity of P for sequence of mutually disjoint events, we can write for limn→∞ An = ∪n∈N An,

P(∪n∈N An) = P(A1) + ∑
i∈N

(P(Ai+1)− P(Ai)) = P(A1) + lim
n→∞

n−1

∑
i=1

(P(Ai+1)− P(Ai)) = lim
n→∞

P(An).

Continuity for decreasing sets. Similarly, for a non-increasing sequence of sets (Bn ∈ F : n ∈ N), we can
find the non-decreasing sequence of sets (Bc

n ∈ F : n ∈ N). By the first part, we have

P( lim
n→∞

Bn) = P(∩n∈NBn) = 1 − P(∪n∈NBc
n) = 1 − P( lim

n→∞
Bc

n) = 1 − lim
n→∞

P(Bc
n) = lim

n→∞
P(Bn).

Continuity for general sequence of sets. We can similarly prove the general result for a sequence of
sets (An ∈ F : n ∈ N) such that the limits limn An exists. We can define non-increasing sequences of sets
(En = ∪m⩾n Am ∈ F : n ∈ N) and non-decreasing sequences of sets (Fn = ∩m⩾n Am ∈ F : n ∈ N). From the
continuity of probability for the monotonic sets, we have

P(limsup
n

An) = P(∩n∈NEn) = lim
n→∞

P(En), P(liminf
n

An) = P(∪n∈NFn) = lim
n→∞

P(Fn).

From the definition of two sequences of sets, we obtain

P(En)⩾ sup
m⩾n

P(Am), P(Fn)⩽ inf
m⩾n

P(Am).

Therefore taking limsup and liminf, we obtain

limsup
n∈N

P(En)⩾ inf
n∈N

sup
m⩾n

P(Am)⩾ sup
n∈N

inf
m⩾n

P(Am)⩾ liminf
n∈N

P(Fn).

Since P(limn An) = limn P(En) = limn P(Fn) exists, the result follows.
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