Lecture-03: Independence

1 Law of Total Probability

Exercise 1.1 (Countably infinite coin tosses). Consider a sequence of coin tosses, such that the
sample space is Q) = {H, T}, For set of outcomes E, 2 {w € O : w, = H}, we consider an event
space generated by F £ o({E,:n € N}). Let F, be the event space generate by the first n coin
tosses, i.e. F, 2 oc({E;:i € [n]}). Let A, be the set of outcomes corresponding to at least one head
in first n outcomes A, £ {w € Q: w; = H for some i € [n]} = U"_,E; € F, and By, be the set of out-
comes corresponding to first head at the nth outcome B, £ {w € Q:wy =+ =w, 1 =T,w=H} =
N ESNE, €.

1. Show that F = ({F, : n € N}).
2. Show thato({A,:n € N}) CFand o({B,:n € N}) C F.

Theorem 1.2 (Law of total probability). For a probability space (Q0,F, P), consider a sequence of events B € N
that partitions the sample space (), i.e. By, N By, = @ for all m # n, and U, e By = Q. Then, for any event A € F,
we have
P(A)= Y P(ANBy).
nelN

Proof. We can expand any event A € J in terms of any partition B of the sample space () as
A=ANQ=AN(UpenBn) =Upen(ANBy).

From the mutual disjointness of the events B € FN, it follows that the sequence (ANB, € F:neNN)is
mutually disjoint. The result follows from the countable additivity of probability of disjoint events. O

Example 1.3 (Countably infinite coin tosses). Consider the sample space Q2 = {H, TN and event space J
generated by sequence E € 7N defined in Exercise We observe that any event A € J; can be written as

A =Uyea {(U} =Uypea 017'1:1 ({w € Ei} U {w ¢ Ei})-

2 Independence

Definition 2.1 (Independence of events). For a probability space (Q,F, P), a family of events A € F/ is said
to be independent, if for any finite set F C I, we have

P(NiepAi) = [P(A)).
ieF

Remark 1. The certain event () and the impossible event @ are always independent to every event A € J.



Example 2.2 (Two coin tosses). Consider two coin tosses, such that the sample space is ) =
{HH,HT,TH,TT}, and the event space is ¥ = P(Q). It suffices to define a probability function P : ¥ — [0, 1]
on the sample space. We define one such probability function P, such that

1

P({HH}) = P({HT}) = P({TH}) = P({TT}) = .

Let event E; £ {HH,HT} and E, £ {HH, TH} correspond to getting a head on the first or the second toss
respectively.

From the defined probability function, we obtain the probability of getting a tail on the first or the
second toss is %, and identical to the probability of getting a head on the first or the second toss. That is,
P(E;) = P(E;) = } and the intersecting event E; N E, = { HH} with the probability P(E; N E;) = §. That s,
for events Eq, E; € F, we have

P(Ey NEz) = P(Eq1)P(Ez).

That is, events E; and E; are independent.

Example 2.3 (Countably infinite coin tosses). Consider the outcome space )} = {H, T}N and event space
J generated by the sequence E defined in Exercise We define a probability function P : F — [0,1] by
P(NicrE;) = p!f! for any finite subset F C IN. By definition, E € FN is a sequence of independent events.
Consider A, B € N, where A, £ U"_|E; and B, = ﬂ;:ll ESNE, € F for all n € N. It follows that P(A,) =
1—(1—p)"and P(B,) = p(1—p)*~ ! forn € N.

For any w € O, we can define the number of heads in first n trials by k,(w) £ Y1, 1 (my(wi) =
Y1 1,cE,)- For any general event A € F, = o ({E; : i € [n]}), we can write

P(A) =) f[ [P{w €E}+P{we Ef}] = Y pr@) (1 = pyrn(@),

weAiI=1 wEA

Example 2.4 (Counter example). Consider a probability space (Q),F,P) and the events A1, Ay, A3 € F. The
condition P(A; N Ay N Az) = P(A1)P(A;)P(A3) is not sufficient to guarantee independence of the three
events. In particular, we see that if

P(A1 N Ay N A3) = P(A1)P(A;)P(A3), P(A1 N Ay N AS) # P(A1)P(Az)P(AS),

then P(A1 N Az) = P(Al NAN A3) ar P(Al NA N Ag) £ P(Al)P(Az).

Definition 2.5. A family of collections of events (A; C F :i € I) is called independent, if for any finite set
FCTand A; € A; foralli € F, we have

P(NierAi) = [P(A).
icF

3 Conditional Probability

Consider N trials of a random experiment over an outcome space (2 and an event space F. Let w, € O
denote the outcome of the experiment of the nth trial. Consider two events A, B € F and denote the number



of times event A and event B occurs by N(A) and N(B) respectively. We denote the number of times both
events A and B occurred by N(A N B). Then, we can write these numbers in terms of indicator functions as

N N N
N(A) =) Lip.eap N(B) =) 1iu,eh}r N(ANB) =) Iyy,cans}-
n=1 n=1 n=1

We denote the relative frequency of events A, B, AN B in N trials by NI(\}L‘ ) , NI(\? ) , N(’?\IQB) respectively. We can

find the relative frequency of events A, on the trials where B occurred as

M2 N(ANB)

N(B)
5@ NE)

Inspired by the relative frequency, we define the conditional probability function conditioned on events.

Definition 3.1. Fix an event B € F such that P(B) > 0, we can define the conditional probability P(-|B) :
F — [0,1] of any event A € F conditioned on the event B as

P(A|B) _P(;‘(Q)B).

Lemma 3.2 (Conditional probability). For any event B € F such that P(B) > 0, the conditional probability
P(-|B) : & — [0,1] is a probability measure on space (Q),F).
Proof. We will show that the conditional probability satisfies all three axioms of a probability measure.

Non-negativity: For all events A € F, we have P(A|B) > 0 since P(ANB) > 0.

c-additivity: For an infinite sequence of mutually disjoint events (A; € F:i € IN) such that A;NA; =@
for all i # j, we have P(UjenA;i|B) = Yjen P(A;|B). This follows from disjointness of the sequence
(AiNBeTJ:icN).

Certainty: Since QN B = B, we have P(Q)|B) = 1.

O
Remark 2. For two independent events A,B € F such that P(A N B) > 0, we have P(A|B) = P(A) and
P(B|A) = P(B). If either P(A) =0or P(B) =0, then P(AN B) =0.
Remark 3. For any partition B of the sample space (), if P(B,;) > 0 for all n € IN, then from the law of total

probability and the definition of conditional probability, we have

P(A) = ZNP<A|Bn>P<Bn>-

4 Conditional Independence

Definition 4.1 (Conditional independence of events). For a probability space (Q,F,P), a family of events
A € Fl is said to be conditionally independent given an event C € F such that P(C) > 0, if for any finite set
F C I, we have
P(Nicr Ai|C) = TP(A[C).
i€F

Remark 4. Let C € F be an event such that P(C) > 0. Two events A,B € J are said to be conditionally
independent given event C, if

P(ANB|C) = P(A|C)P(B|C).
If the event C = (), it implies that A, B are independent events.

Remark 5. Two events may be independent, but not conditionally independent and vice versa.



Example 4.2. Consider two independent events A, B € J such that P(ANB) > 0 and P(A U B) < 1. Then
the events A and B are not conditionally independent given A U B. To see this, we observe that
P((ANB)N(AUB)) P(ANB) P(A)P(B)

P(ANB|AUB) = EGINE = PIAUB) = Paus) = (AAUBP®).

We further observe that P(B|A U B) = 5{{2ks # P(B) and hence P(A N B|AUB) # P(A|AUB)P(B|AUB).

Example 4.3. Consider two non-independent events A, B € F such that P(A) > 0. Then the events A and B
are conditionally independent given A. To see this, we observe that

P(ANB)

P(ANBIA) =5

— P(B|A)P(A|A).
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