
Lecture-03: Independence

1 Law of Total Probability

Exercise 1.1 (Countably infinite coin tosses). Consider a sequence of coin tosses, such that the
sample space is Ω = {H, T}N. For set of outcomes En ≜ {ω ∈ Ω : ωn = H}, we consider an event
space generated by F ≜ σ({En : n ∈ N}). Let Fn be the event space generate by the first n coin
tosses, i.e. Fn ≜ σ({Ei : i ∈ [n]}). Let An be the set of outcomes corresponding to at least one head
in first n outcomes An ≜ {ω ∈ Ω : ωi = H for some i ∈ [n]} = ∪n

i=1Ei ∈ F, and Bn be the set of out-
comes corresponding to first head at the nth outcome Bn ≜ {ω ∈ Ω : ω1 = · · · = ωn−1 = T,ω = H}=
∩n−1

i=1 Ec
i ∩ En ∈ F.

1. Show that F = σ({Fn : n ∈ N}).

2. Show that σ({An : n ∈ N}) ⊆ F and σ({Bn : n ∈ N}) ⊆ F.

Theorem 1.2 (Law of total probability). For a probability space (Ω,F, P), consider a sequence of events B ∈ FN

that partitions the sample space Ω, i.e. Bm ∩ Bn = ∅ for all m ̸= n, and ∪n∈NBn = Ω. Then, for any event A ∈ F,
we have

P(A) = ∑
n∈N

P(A ∩ Bn).

Proof. We can expand any event A ∈ F in terms of any partition B of the sample space Ω as

A = A ∩ Ω = A ∩ (∪n∈NBn) = ∪n∈N(A ∩ Bn).

From the mutual disjointness of the events B ∈ FN, it follows that the sequence (A ∩ Bn ∈ F : n ∈ N) is
mutually disjoint. The result follows from the countable additivity of probability of disjoint events.

Example 1.3 (Countably infinite coin tosses). Consider the sample space Ω = {H, T}N and event space F

generated by sequence E ∈ FN defined in Exercise 1.1. We observe that any event A ∈ Fn can be written as

A = ∪ω∈A {ω} = ∪ω∈A ∩n
i=1 ({ω ∈ Ei} ∪ {ω /∈ Ei}).

2 Independence

Definition 2.1 (Independence of events). For a probability space (Ω,F, P), a family of events A ∈ FI is said
to be independent, if for any finite set F ⊆ I, we have

P(∩i∈F Ai) = ∏
i∈F

P(Ai).

Remark 1. The certain event Ω and the impossible event ∅ are always independent to every event A ∈ F.
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Example 2.2 (Two coin tosses). Consider two coin tosses, such that the sample space is Ω =
{HH, HT, TH, TT}, and the event space is F=P(Ω). It suffices to define a probability function P : F→ [0,1]
on the sample space. We define one such probability function P, such that

P({HH}) = P({HT}) = P({TH}) = P({TT}) = 1
4

.

Let event E1 ≜ {HH, HT} and E2 ≜ {HH, TH} correspond to getting a head on the first or the second toss
respectively.

From the defined probability function, we obtain the probability of getting a tail on the first or the
second toss is 1

2 , and identical to the probability of getting a head on the first or the second toss. That is,
P(E1) = P(E2) =

1
2 and the intersecting event E1 ∩ E2 = {HH} with the probability P(E1 ∩ E2) =

1
4 . That is,

for events E1, E2 ∈ F, we have
P(E1 ∩ E2) = P(E1)P(E2).

That is, events E1 and E2 are independent.

Example 2.3 (Countably infinite coin tosses). Consider the outcome space Ω = {H, T}N and event space
F generated by the sequence E defined in Exercise 1.1. We define a probability function P : F → [0,1] by
P(∩i∈FEi) = p|F| for any finite subset F ⊆ N. By definition, E ∈ FN is a sequence of independent events.
Consider A, B ∈ FN, where An ≜ ∪n

i=1Ei and Bn ≜ ∩n−1
i=1 Ec

i ∩ En ∈ F for all n ∈ N. It follows that P(An) =

1 − (1 − p)n and P(Bn) = p(1 − p)n−1 for n ∈ N.
For any ω ∈ Ω, we can define the number of heads in first n trials by kn(ω) ≜ ∑n

i=11{H}(ωi) =

∑n
i=11{ω∈Ei}. For any general event A ∈ Fn = σ({Ei : i ∈ [n]}), we can write

P(A) = ∑
ω∈A

n

∏
i=1

[
P{ω ∈ Ei}+ P{ω ∈ Ec

i }
]
= ∑

ω∈A
pkn(ω)(1 − p)n−kn(ω).

Example 2.4 (Counter example). Consider a probability space (Ω,F, P) and the events A1, A2, A3 ∈ F. The
condition P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3) is not sufficient to guarantee independence of the three
events. In particular, we see that if

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3), P(A1 ∩ A2 ∩ Ac
3) ̸= P(A1)P(A2)P(Ac

3),

then P(A1 ∩ A2) = P(A1 ∩ A2 ∩ A3) + P(A1 ∩ A2 ∩ Ac
3) ̸= P(A1)P(A2).

Definition 2.5. A family of collections of events (Ai ⊆ F : i ∈ I) is called independent, if for any finite set
F ⊆ I and Ai ∈ Ai for all i ∈ F, we have

P(∩i∈F Ai) = ∏
i∈F

P(Ai).

3 Conditional Probability

Consider N trials of a random experiment over an outcome space Ω and an event space F. Let ωn ∈ Ω
denote the outcome of the experiment of the nth trial. Consider two events A, B ∈ F and denote the number
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of times event A and event B occurs by N(A) and N(B) respectively. We denote the number of times both
events A and B occurred by N(A ∩ B). Then, we can write these numbers in terms of indicator functions as

N(A) =
N

∑
n=1

1{ωn∈A}, N(B) =
N

∑
n=1

1{ωn∈B}, N(A ∩ B) =
N

∑
n=1

1{ωn∈A∩B}.

We denote the relative frequency of events A, B, A ∩ B in N trials by N(A)
N , N(B)

N , N(A∩B)
N respectively. We can

find the relative frequency of events A, on the trials where B occurred as

N(A∩B)
N

N(B)
N

=
N(A ∩ B)

N(B)
.

Inspired by the relative frequency, we define the conditional probability function conditioned on events.

Definition 3.1. Fix an event B ∈ F such that P(B) > 0, we can define the conditional probability P(·|B) :
F → [0,1] of any event A ∈ F conditioned on the event B as

P(A|B) = P(A ∩ B)
P(B)

.

Lemma 3.2 (Conditional probability). For any event B ∈ F such that P(B) > 0, the conditional probability
P(·|B) : F → [0,1] is a probability measure on space (Ω,F).

Proof. We will show that the conditional probability satisfies all three axioms of a probability measure.

Non-negativity: For all events A ∈ F, we have P(A|B)⩾ 0 since P(A ∩ B)⩾ 0.

σ-additivity: For an infinite sequence of mutually disjoint events (Ai ∈ F : i ∈ N) such that Ai ∩ Aj = ∅
for all i ̸= j, we have P(∪i∈N Ai|B) = ∑i∈N P(Ai|B). This follows from disjointness of the sequence
(Ai ∩ B ∈ F : i ∈ N).

Certainty: Since Ω ∩ B = B, we have P(Ω|B) = 1.

Remark 2. For two independent events A, B ∈ F such that P(A ∩ B) > 0, we have P(A|B) = P(A) and
P(B|A) = P(B). If either P(A) = 0 or P(B) = 0, then P(A ∩ B) = 0.

Remark 3. For any partition B of the sample space Ω, if P(Bn) > 0 for all n ∈ N, then from the law of total
probability and the definition of conditional probability, we have

P(A) = ∑
n∈N

P(A|Bn)P(Bn).

4 Conditional Independence

Definition 4.1 (Conditional independence of events). For a probability space (Ω,F, P), a family of events
A ∈ FI is said to be conditionally independent given an event C ∈ F such that P(C)> 0, if for any finite set
F ⊆ I, we have

P(∩i∈F Ai|C) = ∏
i∈F

P(Ai|C).

Remark 4. Let C ∈ F be an event such that P(C) > 0. Two events A, B ∈ F are said to be conditionally
independent given event C, if

P(A ∩ B|C) = P(A|C)P(B|C).

If the event C = Ω, it implies that A, B are independent events.

Remark 5. Two events may be independent, but not conditionally independent and vice versa.
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Example 4.2. Consider two independent events A, B ∈ F such that P(A ∩ B) > 0 and P(A ∪ B) < 1. Then
the events A and B are not conditionally independent given A ∪ B. To see this, we observe that

P(A ∩ B|A ∪ B) =
P((A ∩ B) ∩ (A ∪ B))

P(A ∪ B)
=

P(A ∩ B)
P(A ∪ B)

=
P(A)P(B)
P(A ∪ B)

= P(A|A ∪ B)P(B).

We further observe that P(B|A ∪ B) = P(B)
P(A∪B) ̸= P(B) and hence P(A ∩ B|A ∪ B) ̸= P(A|A ∪ B)P(B|A ∪ B).

Example 4.3. Consider two non-independent events A, B ∈ F such that P(A)> 0. Then the events A and B
are conditionally independent given A. To see this, we observe that

P(A ∩ B|A) =
P(A ∩ B)

P(A)
= P(B|A)P(A|A).
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