Lecture-06: Transformation of random vectors

1 Functions of random variables

Definition 1.1. Borel measurable sets on a space R" is denoted by B(IR") and generated by the collection
(' (—o0,x] : x € R,i € [n]). A function g:R" — R™ is called Borel measurable function, if g~!(B,,) €
B(R") for any B,, € B(R™).

Proposition 1.2. Consider a random variable X : () — R defined on the probability space (Q),F,P). Suppose g :
R — R is function such that g~'(—o0,x] € B(R), then g(X) is a random variable.

Proof. We represent g(X) by a map Y : Q — R such that Y(w) £ (g0 X)(w) for all outcomes w € Q. We
further check that for any half open set By = (—o0,x], we have Y~!(By) = (X1 0 ¢~ 1)(By). Since g~ (By) €
B(R), it follows that Y~!(B,) € F by the definition of random variables. O

Example 1.3 (Monotone function of random variables). Let ¢ : R — R be a monotonically increasing
function, then ¢~!(—o0,x] € B(R) for all x € R. Consider a random variable X : O — R defined on the
probability space (Q,F, P), then Y £ ¢(X) is a random variable with distribution function

Fr(y) = P{3(X) <y} = P{X<g7' () } = Fx(g~'(v):

Here, ¢~ !(y) is the functional inverse, and not inverse image as we have been seeing typically. We can
think ¢~!(y) = ¢~ {y}, though this inverse image has at most a single element since g is monotonically
increasing.

Example 1.4. Consider a positive random variable X : ) — R defined on a probability space ((), F, P). Let
¢: R, — R, be such that g(x) = e~ for all x € Ry and some 6 > 0. Then, g is monotonically decreasing
in X and x = g~ !(y) = —§ Iny. This implies that g~(—oo,y] = [~ 4 Iny,0) € B(R; ) forall y € R;. Thus g
is a measurable function, and Y = g(X) is a random variable.

Proposition 1.5 (Independence of function of random variables). Let g: R — Rand h: R — R be functions
such that ¢~ '(—oo,x] and h~'(—oo,x] are Borel sets for all x € R. Consider independent random variables X and Y
defined on the probability space (O, F,P), then g(X) and h(Y') are independent random variables.

Proof. For any u,v € R, we can define inverse images Ag (1) £ ¢~ !(—o0,u] and Ay (v) £ h~!(co,v]. Since g, h
are Borel measurable, we have Ag(u), A (v) € B(R). We can write the following outcome set equality for
the joint event

{g(X) <udn {h(Y) <o} = {X € g_l(—oo,u]} N {y e h—l(_oo,v]} = X (Ag(u)) N Y (Ay(0)) € F.

Since X and Y are independent random variables, it follows that X ! (Ag(u)) and Y1 (A (v)) are indepen-
dent events, and the result follows. O



2 Function of random vectors

Proposition 2.1. Consider a random vector X : Q) — R" defined on the probability space (Q),F,P), and a Borel
measurable function g : R" — R™ such that Ag(y) = ity {xeR": gj(x) <yj} € B(R") forall y € R™. Then,
¢(X) : Q) — R™ is a random vector. The joint distribution function Fy : R™ — [0,1] for the vector Y = g(X) is given

by
Fy(y) = P(X '(A4(y))), forally € R™.

Example 2.2 (Sum of random variables). For a random vector X : (2 — R" defined on a probability space
(Q),F,P). Define an addition function + : R" — R such that +(x) = ' ; x; for any x € R". We can verify
that + is a Borel measurable function and hence Y = +(X) = }_I"; X; is a random variable. When n =2 and
X is a continuous random vector with density fy : R*? — R, we can write

R =PEY <y =P{Xa+Xe<yh=[ [ fx(nx)dxdx.
x1€ER Jxp<y—x1
By applying a change of variable (x1,t) = (x1,x1 + x2) and changing the order of integration, we see that

Fy(y) :/ dt/ dxy fx(xq,t — x1).
ISy x1€R

When Y is a continuous random vector, we can write

_ K (y)
dy

fr(y) = /XE]RfX(x,y — x)dx.

When X : Q — R? is an independent vector, then fx(x) = fx, (1) fx(x2) for all x € R%. Therefore, the
density of the sum X; + X; is given by

@) = [ dxfi ()fxaly —x) = (i * fr) (0,

where x : RR x RR — RR is the convolution operator.

Theorem 2.3. For a continuous random vector X : Q) — R™ defined on the probability space (Q), F, P) with density
fx : R™ — Ry and an injective and smooth Borel measurable function g : R™ — R"™, such that Y = g(X) is a
continuous random vector. Then the density of random vector Y is given by

_ fx(x)
M) =T

a 9Yj
Xi

where x = g~ (y) and ] (y) = (J;;(y) = 3 : 1, € [m]) is the Jacobian matrix.

Proof. For an injective map g : R” — R™ we have {x} = ¢~ {y} for any y € ¢(R™). Further, since g is
smooth, we have dy = J(y)dx + o(|dx|), and thus

ldyl = ()| dx| + o(|dx]). 1)

Defining set dB(y) = {w € R™ Y Swi Syt dy]-}, we observe that for any continuous random vector
Y : (O — R™, we have

PoY~!(dB(y)) = fr(y)ldy| = Po X' (dB(x)) = fx(x) |dx|. @)

We get the result by combining (??) and (??). O



Example 2.4 (Sum of random variables). Suppose that X : Q — RR? is a continuous random vector and
Y1 = Xj + X. Let us compute fy, (1) using the above theorem. Let us define a random vector Y : Q) — R?
such that Y = (X; + X, X5) so that |J(y)| = 1. This implies, fy(y) = fx(x). Thus, we may compute the
marginal density of Y; as,

le(yl):/mfx(x)ﬂ{x2=y2,x1+x2=y1}dyzlefx(yl—yZIyz)dyz-

If X is an independent random vector, then

() = /_ifxl (1 —v2) fx, (v2)dy2 = (fx, * fx,) (Y1),

where * represents convolution.



