
Lecture-07: Random Processes

1 Introduction

Remark 1. For an arbitrary index set T, and a real-valued function x ∈ RT , the projection operator πt : RT →
R maps x ∈ RT to πt(x) = xt.

Definition 1.1 (Random process). Let (Ω,F, P) be a probability space. For an arbitrary index set T and
state space X ⊆ R, a map X : Ω → XT is called a random process if the projections Xt : Ω → X defined by
ω 7→ Xt(ω)≜ (πt ◦ X)(ω) are random variables on the given probability space.

Definition 1.2. For each outcome ω ∈ Ω, we have a function X(ω) : T 7→ X called the sample path or the
sample function of the process X.

Remark 2. A random process X defined on probability space (Ω,F, P) with index set T and state space
X⊆ R, can be thought of as

(a) a map X : Ω × T → X,

(b) a map X : T → XΩ, i.e. a collection of random variables Xt : Ω → X for each time t ∈ T,

(c) a map X : Ω → XT , i.e. a collection of sample functions X(ω) : T → X for each random outcome ω ∈ Ω.

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process. If
the index set T ⊆ R is countable, the stochastic process is called discrete-time stochastic process or random
sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The index
set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial process.
When T = Rn × [0,∞), stochastic process X is a spatio-temporal process.

Example 1.3. We list some examples of each such stochastic process.

i Discrete random sequence: brand switching, discrete time queues, number of people at bank each day.

ii Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of nth
arrival, workload at arrivals in time sharing computer systems.

iii Discrete random process: counting processes, population sampled at birth-death instants, number of
people in queues.

iv Continuous random process: water level in a dam, waiting time till service in a queue, location of a
mobile node in a network.

1.2 Measurability

For random process X : Ω → XT defined on the probability space (Ω,F, P), the projections Xt ≜ πt ◦ X are
F-measurable random variables. Therefore, the set of outcomes AXt(x)≜ X−1

t (−∞, x] ∈ F for all t ∈ T and
x ∈ R.
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Definition 1.4. A random map X : Ω → XT is called F-measurable and hence a random process, if the set
of outcomes AXt(x) = X−1

t (−∞, x] ∈ F for all t ∈ T and x ∈ R.

Definition 1.5. The event space generated by a random process X : Ω →XT defined on a probability space
(Ω,F, P) is given by

σ(X)≜ σ(AXt(x) : t ∈ T, x ∈ R).

Definition 1.6. For a random process X : Ω → XT defined on the probability space (Ω,F, P), we define the
projection of X onto components S ⊆ T as the random vector XS : Ω → XS, where XS ≜ (Xs : s ∈ S).

Remark 3. Recall that π−1
t (−∞, x] =×s∈T(−∞, xs] where xs = x for s = t and xs = ∞ for all s ̸= t. The

F-measurability of process X implies that for any countable set S ⊆ T, we have AXS(xS)≜ ∩s∈S AXs(xs) ∈ F

for xS ∈ XS.

Remark 4. We can define AX(x) ≜ ∩t∈T AXt(xt) for any x ∈ RT . However, AX(x) is guaranteed to be an
event only when S ≜ {t ∈ T : πt(x) < ∞} is a countable set. In this case,

AX(x) = ∩t∈T AXt(xt) = ∩s∈S AXs(xs) = AXS(xS) ∈ F.

Example 1.7 (Bernoulli sequence). Consider a sample space {H, T}N. We define a mapping X : Ω →
{0,1}N such that Xn(ω) = 1{H}(ωn) = 1{ωn=H}. The map X is an F-measurable random sequence, if each
Xn : Ω → {0,1} is a bi-variate F-measurable random variable on the probability space (Ω,F, P). Therefore,
the event space F must contain the event space generated by sequence of events E ∈ FN defined by En ≜
{ω ∈ Ω : Xn(ω) = 1} = {ω ∈ Ω : ωn = H} ∈ F for all n ∈ N. That is,

σ(X) = σ(E) = σ({En : n ∈ N}).

1.3 Distribution

Definition 1.8. For a random process X : Ω → XT defined on the probability space (Ω,F, P), we define a
finite dimensional distribution FXS : RS → [0,1] for a finite S ⊆ T by

FXS(xS)≜ P(AXS(xS)), xS ∈ RS.

Example 1.9. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N, the event
space F≜ σ(E) where En = {ω ∈ Ω : ωn = H} for n ∈ N, and the probability measure P : F→ [0,1] defined
by

P(∩i∈FEi) = p|F|, for all finite F ⊆ N.

Let X : Ω → {0,1}N defined as Xn(ω) = 1En(ω) for all outcomes ω ∈ Ω and n ∈ N. For this random
sequence, we can obtain the finite dimensional distribution FXS : RS → [0,1] for any finite S ⊆ T and x ∈ RS

in terms of I0(x)≜ {i ∈ S : xi < 0} and I1(x)≜ {i ∈ S : xi ∈ [0,1)}, as

FXS(x) =


1, I0(x) ∪ I1(x) = ∅,
(1 − p)|I1(x)|, I0(x) = ∅, I1(x) ̸= ∅,
0, I0(x) ̸= ∅.

(1)

To define a measure on a random process, we can either put a measure on subsets of sample paths
(X(ω) ∈ RT : ω ∈ Ω), or equip the collection of random variables (Xt ∈ RΩ : t ∈ T) with a joint measure.
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Either way, we are interested in identifying the joint distribution F : RT → [0,1]. To this end, for any x ∈ RT ,
we need to know

FX(x)≜ P

(⋂
t∈T

{ω ∈ Ω : Xt(ω)⩽ xt}
)
= P(

⋂
t∈T

X−1
t (−∞, xt]) = P(AX(x)).

First of all, we don’t know whether AX(x) is an event when T is uncountable. Though, we can verify
that AX(x) ∈ F for x ∈ RT such that {t ∈ T : xt < ∞} is countable. Second, even for a simple independent
process with countably infinite T, any function of the above form would be zero if xt is finite for all t ∈ T.
Therefore, we only look at the values of FX(x) for x ∈ RT where {t ∈ T : xt < ∞} is finite. That is, for any
finite set S ⊆ T, we focus on the events AS(xS) and their probabilities. However, these are precisely the finite
dimensional distributions. Set of all finite dimensional distributions of the stochastic process X : Ω → XT

characterizes its distribution completely.

Example 1.10. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N and the
event space F≜ σ(E) where En = {ω ∈ Ω : ωn = H} for all n ∈ N. Let X : Ω → {0,1}N defined as Xn(ω) =
1En(ω) for all outcomes ω ∈ Ω and n ∈ N. For this random sequence, if we are given the finite dimensional
distribution FXS : RS → [0,1] for any finite S ⊆ T and x ∈ RS in terms of sets I0(x) ≜ {i ∈ S : xi < 0} and
I1(x)≜ {i ∈ S : xi ∈ [0,1)}, as defined in Eq. (??). Then, we can find the probability measure P : F → [0,1] is
given by

P(∩i∈FEi) = p|F|, for all finite F ⊆ N.

1.4 Independence

Definition 1.11. A random process is independent if the collection of event spaces (σ(Xt) : t ∈ T) is inde-
pendent. That is, for all xS ∈ RS, we have

FXS(xS) = P(∩s∈S {Xs ⩽ xs}) = ∏
s∈S

P{Xs ⩽ xs} = ∏
s∈S

FXs(xs).

That is, independence of a random process is equivalent to factorization of any finite dimensional distribu-
tion function into product of individual marginal distribution functions.

Example 1.12. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N, the event
space F ≜ σ(E) where En = {ω ∈ Ω : ωn = H} for all n ∈ N, and the probability measure P : F → [0,1]
defined by

P(∩i∈FEi) = p|F|, for all finite F ⊆ N.

Then, we observe that the random sequence X : Ω → {0,1}N defined by Xn(ω)≜ 1En(ω) for all outcomes
ω ∈ Ω and n ∈ N, is independent.

Definition 1.13. Two stochastic processes X : Ω → XT1 ,Y : Ω → YT2 are independent, if the corresponding
event spaces σ(X),σ(Y) are independent. That is, for any x ∈ RS1 ,y ∈ RS2 for finite S1 ⊆ T1,S2 ⊆ T2, the
events AS1(x)≜ ∩s∈S1 X−1

s (−∞, xs] and BS2(y)≜ ∩s∈S2Y−1
s (−∞,ys] are independent. That is, the joint finite

dimensional distribution of X and Y factorizes, and

P(AS1(x) ∩ BS2(y)) = P(AS1(x))P(BS2(y)) = FXS1
(x)FYS2

(y), x ∈ RS1 ,y ∈ RS2 .
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