Lecture-07: Random Processes

1 Introduction

Remark 1. For an arbitrary index set T, and a real-valued function x € RT, the projection operator 7r; : RT —
R maps x € RT to 7 (x) = x;.

Definition 1.1 (Random process). Let ({2, J,P) be a probability space. For an arbitrary index set T and
state space X C R, a map X : Q — X7 is called a random process if the projections X; : QO — X defined by
w > X(w) £ (711 0 X) (w) are random variables on the given probability space.

Definition 1.2. For each outcome w € (), we have a function X(w) : T — X called the sample path or the
sample function of the process X.

Remark 2. A random process X defined on probability space (Q),F,P) with index set T and state space
X C R, can be thought of as

(@ amapX: OO xT =X,
(b) amap X: T — X, i.e. a collection of random variables X; : QO — X for each time t € T,

(c) amap X: Q) — X7, i.e. a collection of sample functions X(w) : T — X for each random outcome w € Q).

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process. If
the index set T C IR is countable, the stochastic process is called discrete-time stochastic process or random
sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The index
set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial process.
When T = R" x [0,00), stochastic process X is a spatio-temporal process.

Example 1.3. We list some examples of each such stochastic process.
i_ Discrete random sequence: brand switching, discrete time queues, number of people at bank each day.

ii_ Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of nth
arrival, workload at arrivals in time sharing computer systems.

iii- Discrete random process: counting processes, population sampled at birth-death instants, number of
people in queues.

iv_ Continuous random process: water level in a dam, waiting time till service in a queue, location of a
mobile node in a network.

1.2 Measurability

For random process X : QO — XT defined on the probability space (Q,F, P), the projections X; £ 71; o X are

F-measurable random variables. Therefore, the set of outcomes Ay, (x) £ X; 1(—co,x] € F forall t € T and

x €R.



Definition 1.4. A random map X : QO — X7 is called F-measurable and hence a random process, if the set
of outcomes Ax, (x) = X; ' (—co,x] € F forallt € T and x € R.

Definition 1.5. The event space generated by a random process X : O — X defined on a probability space
(Q),F,P) is given by
c(X) 2 0o(Ax,(x):t€ T,x €R).

Definition 1.6. For a random process X : QO — XT defined on the probability space (Q,F, P), we define the
projection of X onto components S C T as the random vector Xs : Q — X5, where Xs 2 (Xs:s € S).

Remark 3. Recall that 71, 1(—o00,x] = Xer(
F-measurability of process X implies that for any countable set S C T, we have Ax, (xs) £ NsesAx, (x5) € F
for xg € X°.

—00, ;5] where xs = x for s = t and x; = oo for all s # t. The

Remark 4. We can define Ax(x) = NerAx, (x¢) for any x € RT. However, Ax(x) is guaranteed to be an
event only when S = {t € T: 71;(x) < oo} is a countable set. In this case,

Ax(x) = NierAx, (%) = NsesAx, (xs) = Ax,(x5) € T.

Example 1.7 (Bernoulli sequence). Consider a sample space {H,T}". We define a mapping X : O —
{0,1}N such that X, (w) = 1 (ty(wn) =1y, —py- The map X is an F-measurable random sequence, if each
Xy : QY — {0,1} is a bi-variate F-measurable random variable on the probability space (Q), F, P). Therefore,

the event space J must contain the event space generated by sequence of events E € FN defined by E, =
{we: Xy(w)=1} ={weQ:w, =H} € Fforalln € N. Thatis,

0(X)=0(E)=0({E;,:n € N}).

1.3 Distribution

Definition 1.8. For a random process X : (2 — XT defined on the probability space (Q,F,P), we define a
finite dimensional distribution Fx, : RS — [0,1] for a finite S C T by

FXS (XS) £ P(AXS (XS)), Xg € ]RS.

Example 1.9. Consider a probability space (0,7, P) defined by the sample space Q = {H, T}, the event
space F £ o(E) where E, = {w € Q: w, = H} for n € N, and the probability measure P : F — [0,1] defined
by

P(NicrE;) = pm, for all finite F C IN.

Let X : O — {0,1}N defined as X, (w) = 1f, (w) for all outcomes w € O and n € N. For this random
sequence, we can obtain the finite dimensional distribution F; : RS — [0,1] for any finite S C T and x € RS

in terms of Iy(x) 2 {i € S:x; <0}and I;(x) £ {i €S:x; €[0,1)}, as

1, I(x)UL(x) =0,
Fro(x) = (1= p)h®), Tp(x) =0, (x) £, M)
0, Io(x) # .

To define a measure on a random process, we can either put a measure on subsets of sample paths
(X(w) € RT : w € O), or equip the collection of random variables (X; € R? : t € T) with a joint measure.



Either way, we are interested in identifying the joint distribution F : RT — [0,1]. To this end, for any x € R,
we need to know

Fx(x) &P (ﬂ {weQ: X (w) < xt}> =P(() X; }(—o0,x;]) = P(Ax(x)).

teT teT

First of all, we don’t know whether Ax(x) is an event when T is uncountable. Though, we can verify
that Ax(x) € J for x € RT such that {t € T: x; < o} is countable. Second, even for a simple independent
process with countably infinite T, any function of the above form would be zero if x; is finite for all f € T.
Therefore, we only look at the values of Fx(x) for x € RT where {t € T: x; < oo} is finite. That is, for any
finite set S C T, we focus on the events Ag(xs) and their probabilities. However, these are precisely the finite
dimensional distributions. Set of all finite dimensional distributions of the stochastic process X : Q — XT
characterizes its distribution completely.

Example 1.10. Consider a probability space (Q,F,P) defined by the sample space Q) = {H, T} and the
event space F £ ¢(E) where E, = {w € O : w, = H} forall n € N. Let X : Q — {0,1}" defined as X, (w) =
1g, (w) for all outcomes w € Q) and n € IN. For this random sequence, if we are given the finite dimensional
distribution Fx, : R® — [0,1] for any finite S C T and x € RS in terms of sets Ip(x) = {i € S: x; <0} and
I(x) 2 {i€S:x; €[0,1)}, as defined in Eq. (2?). Then, we can find the probability measure P : F — [0,1] is
given by

P(NjerE;) = p!Fl, for all finite F C .

1.4 Independence

Definition 1.11. A random process is independent if the collection of event spaces (0(X;) : t € T) is inde-
pendent. That is, for all xg € RS, we have

FXS(xS) = P(“ses {Xs < xs}) = QP{XS < xs} = QFXS(XS)-

That is, independence of a random process is equivalent to factorization of any finite dimensional distribu-
tion function into product of individual marginal distribution functions.

Example 1.12. Consider a probability space (), F, P) defined by the sample space Q = {H, T}, the event
space F £ ¢(E) where E, = {w € Q:wy, = H} for all n € N, and the probability measure P : F — [0,1]
defined by

P(NierE;) = pm, for all finite F C IN.

Then, we observe that the random sequence X : Q) — {0,1}N defined by X,(w) £ 1, (w) for all outcomes
w € O and n € N, is independent.

Definition 1.13. Two stochastic processes X : (3 — X0,y : 0 — YTz are independent, if the corresponding
event spaces 0(X),0(Y) are independent. That is, for any x € ]Rsl,y € R for finite S; C Ty,S; C Ty, the
events Ag, (x) = Nges, X5 1(—00,x5] and Bs, (y) = Nges, Yy 1 (—o00,ys] are independent. That is, the joint finite
dimensional distribution of X and Y factorizes, and

P(As, (x) N Bs, (y)) = P(As, (x))P(Bs, (y)) = Fx, (¥)Fy;, (y), x € R,y € R™.



