Lecture-08: Expectation

1 Expectation

Example 1.1. Consider a probability space (€0, F,P). We consider N trials of a random experiment, and
define a random vector X : QO — XN such that X; £ 7; 0 X : O — X is a discrete random variable associated
with the trial i € [N]. If the marginal distributions of random variables (X3, ..., Xy) are identical with the
common probability mass function Py, : X — [0,1], then the empirical mean of random variable X; can be
written as
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For a random variable X; : QO — X, we can define events Ex, (x) = X; ! {x} for each value x € X. The
probability mass function Py, : X — [0,1] for the discrete random variable X; can be estimated for each
x € X as the empirical probability mass function

Recall that a simple random variable X; can be written as X7 =}, c x1 Ex, ()7 where Ex, = (Ex, (x) €

J:x € X) is a finite partition of the sample space Q) and Py, (x) = P(Ex,(x)). That is, we can write the
empirical mean in terms of the empirical PMF as
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= N Z Z x]lEXi(x)(w) = Z xPx, (x).
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This example motivates the following definition of mean for simple random variables.

Definition 1.2 (Expectation of simple random variable). The mean or expectation of a simple random
variable X : 3 — X C R defined on a probability space (Q},F, P), is denoted by [E[X] and defined as

E[X] £ ) xPx(x).
xeX
Remark 1. For an indicator random variable 14, we have E14 = P(A). That is, the expectation of an indi-
cator function is the probability of the indicated set.

Remark 2. Since a simple random variable can be written as X = Y cx x1g, () where Ex(x) £ X~ 1{x} for

all x € X, we can write the expectation of a simple random variable as an integral
E[X] = / X(w)P(dw) = / Y xlp, (o (@)P(dw) = ¥ x / Tp () (@)P(dw) = Y %E[1g, ()] = ¥ xPx(x).
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Theorem 1.3. Consider a non-negative random variable X : Q) — R, defined on a probability space (Q),F, P). There
exists a sequence of non-decreasing non-negative simple random variables Y : Q — RY such that for all w € Q)

Yn(w) < Yyq1(w), foralln € N, and lirrlnYn(w) = X(w).



Then E[Y;] is defined for each n € IN, the sequence (E[Y,] € R4 : n € IN) is non-decreasing, and the limit lim,, E[Y;] €
R U {oo} exists. This limit is independent of the choice of the sequence and depends only on the probability space.

Proof. For each n € N and k € {0,...,2%" — 1}, we define half-open sets B, ; = (k27",(k 4+ 1)2"]. Then,

the collection of sets B, £ (Buk ke {O,. ..,2%m 1}) partitions the set (0,2"] for each n € IN. Further, we
observe that U,cn(0,2"] = R™ and that B, 1.1 o U By 112k+1 = By forall n € N and k.
For a non-negative random variable X : () — IR, we define events Aff =X -1 (Byx) € F, and a sequence

of simple non-negative random variables Y : QO — RY in the following fashion
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We observe that Yn is a quantized version of X, and its value is the left end-point k27" when X € B, for

each k € {O,... 1} Since U2 _1A§k = X_l(O,Z”], it follows that we cover the positive real line as
n grows larger and the step size grows smaller. Thus, the limiting random variable can take all possible
non-negative real values. We observe that
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We see that Yy (w) < Y41 (w) € X(w) and lim, Yy (w) = X(w) for all w € Q.
Since Yy, : Q3 — R is a simple random variable for all n € IN, the expectation E[Y},] is defined for all n,

and can be written as ,
22 _q
Z k27" [Fx((k+1)27") — Fx(k27™)].

We observe that this expectation is completely specified by the distribution function Fx, and we can write

the limit ,
241
mE[Y,] = lim Z k27" [Fy (k27" +27) — Py (k2~™))] :/+xdFX(x).
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Definition 1.4 (Expectation of a non-negative random variable). For a non-negative random variable X :
Q) — R defined on the probability space (), F, P), consider the sequence of non-decreasing simple random
variables Y : Q) — ]R]liI such that lim, Y, = X. The expectation of the non-negative random variable X is
defined as

E[X] = EmE[Y,].

Remark 3. From the definition, it follows that E[X] = f]R+ xdFx(x).

Definition 1.5 (Expectation of a real random variable). For a real-valued random variable X defined on a
probability space (), F, P), we can define the following functions

X; £ max{X,0}, X_ £ max{0,—X}.

We can verify that X, X_ are non-negative random variables and hence their expectations are well defined.
We observe that X(w) = X4 (w) — X—(w) for each w € Q). If at least one of the E[X ]| and E[X_] is finite,
then the expectation of the random variable X is defined as

E[X] £ E[X,] - E[X_].



Theorem 1.6 (Expectation as an integral with respect to the distribution function). For a random variable
X : Q) — R defined on the probability space (Q), F, P), the expectation is given by

Emzém&m.

Proof. It suffices to show this for a non-negative random variable X, and the result follows from the defini-
tion of expectation of a non-negative random variable as the limit of expectation of approximating simple
functions. O

2 Properties of Expectations

Theorem 2.1 (Properties). Let X : Q) — R be a random variable defined on the probability space (), F, P).

(i) Linearity: Let a,b € R and X,Y be random variables defined on the probability space (QQ,F,P). If EX,EY,
and aEX + VEY are well defined, then E(aX + bY') is well defined and

E(aX +bY) =aEX + DEY.
(i) Monotonicity: If P{X > Y} =1 and E[Y] is well defined with E[Y] > —oo, then E[X] is well defined and
E[X] > E[Y].

(iii) Functions of random variables: Let g : R — R be a Borel measurable function, then ¢(X) is a random
variable with B[g(X)] = [,cg §(x)dF(x).

(iv) Continuous random variables: Let fx : R — [0,00) be the density function, then EX = [, _p Xfx(x)dx.
(v) Discrete random variables: Let Px : X — [0,1] be the probability mass function, then EX =Y co xPx (x).

(vi) Integration by parts: The expectation EX = [, (1 — Fx(x))dx — [, _oFx(x)dx is well defined when at
least one of the two parts is finite on the right hand side.

Proof. Tt suffices to show properties (i) — (iii) for simple random variables.

(i) Let X = Yyexx¥1gy(x) and Y = ¥ cyylg (,) be simple random variables, then (Ex(x) N Ey(y) €
F: (x,y) € X x ) partition the sample space (). Hence, we can write aX +bY = ¥, yeooxy(ax +
by) (g, (x)nEy(y)} and from linearity of sum it follows that

ElaX +bY]= Y (ax+by)P{Ex(x)NEy(y)}
(xy)eXxy
=a) x) P{Ex(x)NEy(y)} +b) v ) P{Ex(x)NEy(y)}
xeX yey yeyY xeX
=a ) xP(Ex(x))+b ) yP(Ey(y)) = aEX + EY.
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(if) From the fact that X — Y > 0 almost surely and linearity of expectation, it suffices to show that EX > 0
for non-negative random variable X. It can easily be shown for simple non-negative random variables,
and follows for general non-negative random variables by taking limits.

(iii) It suffices to show this holds true for simple random variables X : ) — X C R. Since g : R — R is Borel
measurable, Y £ ¢(X) : Q — Y £ ¢(X) is a random variable. It follows that, we can write the following

disjoint union X = Uyey Uyco-14,y {x}. Further, for each y € Y, we have

EY(y) = {w €O (go X)(w) :y} =x! Og_l {y} = Uxeg—l{y}EX(x)'

Since Ex(x) are disjoint for all x € X, we get P(Ey(y)) = Lycg1(y) P(Ex(x)). Using the above two
facts, we can write the expectation

E[Y]=} yP(Ex(y)= ) ) &)P(Ex(x)) =} g(x)P(Ex(x)).
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(iv) For continuous random variables, we have dFx(x) = fx(x)dx for all x € R.
(v) For discrete random variables X : ) — X, we have dFx(x) = Px(x) for all x € X and zero otherwise.

(vi) We can write EX = [, _,xdFx(x) — [,-,xd(1 — Fx)(x). We apply integration by parts to the first term
on the right, to get

./;;<0 xdFx(x) = xFx(x)|% o — / Fx(x)dx.

x<0

Similarly, we apply integration by parts to the second term on the right, to get

- [ 30 - F)(@) = —x(1 - Ex()IF + [ (1~ F()ax
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