Lecture-10: Correlation

1 Correlation

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables defined on the same probability space (Ω, \mathcal{F}, P) .

Exercise 1.1. Show that the function $g : \mathbb{R}^2 \to \mathbb{R}$ defined by $g : (x, y) \mapsto xy$ is a Borel measurable function.

Definition 1.2 (Correlation). For two random variables *X*, *Y* defined on the same probability space, the **correlation** between these two random variables is defined as $\mathbb{E}[XY]$. If $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$, then the random variables *X*, *Y* are called **uncorrelated**.

Lemma 1.3. If X, Y are independent random variables, then they are uncorrelated.

Proof. It suffices to show for *X*, *Y* simple and independent random variables. We can write $X = \sum_{x \in \mathcal{X}} x \mathbb{1}_{A_X(x)}$ and $Y = \sum_{y \in \mathcal{Y}} y \mathbb{1}_{A_Y(y)}$. Therefore,

$$\mathbb{E}[XY] = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} xyP\{A_X(x)\cap A_Y(y)\} = \sum_{x\in\mathcal{X}} xP(A_X(x))\sum_{y\in\mathcal{Y}} yP(A_Y(y)) = \mathbb{E}[X]\mathbb{E}[Y].$$

Proof. If X, Y are independent random variables, then the joint distribution $F_{X,Y}(x,y) = F_X(x)F_Y(y)$ for all $(x,y) \in \mathbb{R}^2$. Therefore,

$$\mathbb{E}[XY] = \int_{(x,y)\in\mathbb{R}^2} xydF_{X,Y}(x,y) = \int_{x\in\mathbb{R}} xdF_X(x)\int_{y\in\mathbb{R}} ydF_Y(y) = \mathbb{E}[X]\mathbb{E}[Y].$$

Example 1.4 (Uncorrelated dependent random variables). Let $X : \Omega \to \mathbb{R}$ be a continuous random variable with even density function $f_X : \mathbb{R} \to \mathbb{R}_+$, and $g : \mathbb{R} \to \mathbb{R}_+$ be another even function that is increasing for $y \in \mathbb{R}_+$. Then g is Borel measurable function and Y = g(X) is a random variable. Further, we can verify that X, Y are uncorrelated and dependent random variables.

To show dependence of *X* and *Y*, we take positive *x*, *y* such that $F_X(x) < 1$ and $x > x_y$ where $\{x_y\} = g^{-1}(y) \cap \mathbb{R}_+$. Then, we can write the set

$$A_Y(y) = Y^{-1}(-\infty, y] = X^{-1}[-x_y, x_y].$$

Hence, we can write the joint distribution at (x, y) as

$$F_{X,Y}(x,y) = P\{X \le x, Y \le y\} = P(A_X(x) \cap A_Y(y)) = P(A_Y(y)) = F_Y(y) \neq F_X(x)F_Y(y).$$

Since *X* has even density function, we have $f_X(x) = f_X(-x)$ for all $x \in \mathbb{R}$. Therefore, we have

$$\mathbb{E}Xg(X)\mathbb{1}_{\{X<0\}} = \int_{x<0} xg(x)f_X(x)dx = \int_{u>0} (-u)g(-u)f_X(-u)du = -\mathbb{E}Xg(X)\mathbb{1}_{\{X>0\}}$$

The last equality follows from the fact that g and f_X are even. Therefore, we have

 $\mathbb{E}[Xg(X)] = \mathbb{E}[Xg(X)\mathbbm{1}_{\{X<0\}}] + \mathbb{E}[Xg(X)\mathbbm{1}_{\{X>0\}}] = -\mathbb{E}[Xg(X)\mathbbm{1}_{\{X>0\}}] + \mathbb{E}[Xg(X)\mathbbm{1}_{\{X>0\}}] = 0.$

Theorem 1.5 (AM greater than GM). For any two random variables X, Y, the correlation is upper bounded by the average of the second moments, with equality iff X = Y almost surely. That is,

$$\mathbb{E}[XY] \leqslant \frac{1}{2}(\mathbb{E}X^2 + \mathbb{E}Y^2).$$

Proof. This follows from the linearity and monotonicity of expectations and the fact that $(X - Y)^2 \ge 0$ with equality iff X = Y.

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X, Y, the correlation of absolute values of X and Y is upper bounded by the square root of product of second moments, with equality iff $X = \alpha Y$ for any constant $\alpha \in \mathbb{R}$. That is,

$$\mathbb{E}|XY| \leqslant \sqrt{\mathbb{E}X^2 \mathbb{E}Y^2}$$

Proof. For two random variables *X* and *Y*, we can define normalized random variables $W \triangleq \frac{|X|}{\sqrt{\mathbb{E}X^2}}$ and $Z \triangleq \frac{|Y|}{\sqrt{\mathbb{E}Y^2}}$, to get the result.

2 Covariance

Definition 2.1 (Covariance). For two random variables *X*, *Y* defined on the same probability space, the **covariance** between these two random variables is defined as $cov(X, Y) \triangleq \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y)$.

Lemma 2.2. If the random variables X, Y are uncorrelated, then the covariance is zero.

Proof. We can write the covariance of uncorrelated random variables *X*, *Y* as

$$\operatorname{cov}(X,Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \mathbb{E}XY - (\mathbb{E}X)(\mathbb{E}Y) = 0.$$

Lemma 2.3. Let $X : \Omega \to \mathbb{R}^n$ be an uncorrelated random vector and $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$, then

$$\operatorname{Var}\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i=1}^{n}a_{i}^{2}\operatorname{Var}\left(X_{i}\right).$$

Proof. From the linearity of expectation, we can write the variance of the linear combination as

$$\mathbb{E}\left(\sum_{i=1}^{n}a_{i}(X_{i}-\mathbb{E}X_{i})\right)^{2}=\sum_{i=1}^{n}a_{i}^{2}\operatorname{Var}X_{i}+\sum_{i\neq j}a_{i}a_{j}\operatorname{cov}(X_{i},X_{j}).$$

Definition 2.4 (Correlation coefficient). The ratio of covariance of two random variables *X*, *Y* and the square root of product of their variances is called the **correlation coefficient** and denoted by

(----

$$\rho_{X,Y} \triangleq \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{Var}(X),\operatorname{Var}(Y)}}.$$

Theorem 2.5 (Correlation coefficient). For any two random variables X, Y, the absolute value of correlation coefficient is less than or equal to unity, with equality iff $X = \alpha Y + \beta$ almost surely for constants $\alpha = \sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}(Y)}}$ and $\beta = \mathbb{E}X - \alpha \mathbb{E}Y$.

Proof. For two random variables *X* and *Y*, we can define normalized random variables $W \triangleq \frac{X - \mathbb{E}X}{\sqrt{Var(X)}}$ and $Z \triangleq \frac{Y - \mathbb{E}Y}{\sqrt{Var(Y)}}$. Applying the AM-GM inequality to random variables *W*, *Z*, we get

$$|\operatorname{cov}(X,Y)| \leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}.$$

Recall that equality is achieved iff W = Z almost surely or equivalently iff $X = \alpha Y + \beta$ almost surely. Taking U = -Y, we see that $-\operatorname{cov}(X, Y) \leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}$, and hence the result follows.

3 L^p spaces

Definition 3.1. A pair $(p,q) \in \mathbb{R}^2$ where $p,q \ge 1$ and $\frac{1}{p} + \frac{1}{q} = 1$, is called the **conjugate pair**, and the spaces L^p and L^q are called **dual spaces**.

Example 3.2. The dual of L^1 space is L^{∞} . The space L^2 is dual of itself, and called a **Hilbert space**.

Theorem 3.3 (Hölder's inequality). Consider a conjugate pair (p,q) and random variables $X \in L^p, Y \in L^q$. Then, $\mathbb{E} |XY| \leq ||X||_p ||Y||_a$.

Proof. Consider a random variable $Z : \Omega \to \{p \ln v, q \ln w\}$ with probability mass function $\{\frac{1}{p}, \frac{1}{q}\}$. It follows from Jensen's inequality applied to the convex function $f(x) = e^x$ and the random variable Z, that

$$vw = f(\mathbb{E}Z) \leq \mathbb{E}f(Z) = \frac{v^p}{p} + \frac{w^q}{q}.$$

It follows that for any random variables V, W, we have $VW \leq \frac{V^p}{p} + \frac{W^q}{q}$. Taking expectation on both sides, we get from the monotonicity of expectation that $\mathbb{E}VW \leq \frac{\mathbb{E}V^p}{p} + \frac{\mathbb{E}W^q}{q}$. Taking $V \triangleq \frac{|X|}{\|X\|_p}$ and $W \triangleq \frac{|Y|}{\|Y\|_q}$, we get the result.

Definition 3.4. For a pair of random variables $(X, Y) \in (L^p, L^q)$ for conjugate pair (p,q), we can define inner product $\langle \rangle : L^p \times L^q \to \mathbb{R}$ by

$$\langle \rangle (X,Y) \triangleq \langle X,Y \rangle \triangleq \mathbb{E} XY.$$

Remark 1. For $X \in L^p$ and $Y \in L^q$, the expectation $\mathbb{E}|XY|$ is finite from Hölder's inequality. Therefore, the inner product $\langle X, Y \rangle = \mathbb{E}[XY]$ is well defined and finite.

Remark 2. This inner product is well defined for the conjugate pair $(1, \infty)$.

Theorem 3.5 (Minkowski's inequality). For $1 \le p < \infty$, let $X, Y \in L^p$ be two random variables defined on a probability space (Ω, \mathcal{F}, P) . Then,

$$||X + Y||_p \le ||X||_p + ||Y||_p$$
,

with inequality iff $X = \alpha Y$ for some $\alpha \ge 0$ or Y = 0.

Proof. Since addition is a Borel measurable function, X + Y is a random variable. We first show that $X + Y \in L^p$, when $X, Y \in L^p$. To this end, we observe that $g : \mathbb{R}_+ \to \mathbb{R}_+$ defined by $g(x) = x^p$ for all $x \in \mathbb{R}_+$, is a convex function for $p \ge 1$. From the convexity of g, we have

$$\left|\frac{1}{2}X + \frac{1}{2}Y\right|^{p} \leq \left|\frac{1}{2}|X| + \frac{1}{2}|Y|\right|^{p} = g(\frac{1}{2}|X| + \frac{1}{2}|Y|) \leq \frac{1}{2}g(|X|) + \frac{1}{2}g(|Y|) = \frac{1}{2}|X|^{p} + \frac{1}{2}|Y|^{p}$$

This implies that $|X + Y|^p \leq 2^{p-1}(|X|^p + |Y|^p)$.

The inequality holds trivially if $||X + Y||_p = 0$. Therefore, we assume that $||X + Y||_p > 0$, without any loss of generality. Using the definition of $|||_p$, triangle inequality, and linearity of expectation we get

$$||X + Y||_p^p = \mathbb{E}[|X + Y| |X + Y|^{p-1}] \leq \mathbb{E}([|X| + |Y|) |X + Y|^{p-1}] = \mathbb{E}|X| |X + Y|^{p-1} + \mathbb{E}|Y| |X + Y|^{p-1}.$$

From the Hölder's inequality applied to conjugate pair (p,q) to the two products on RHS, we get

$$||X + Y||_p^p \le (||X||_p + ||Y||_p) |||X + Y|^{p-1}||_q$$

Recall that $q = \frac{p}{p-1}$. Therefore, $\left\| |X+Y|^{p-1} \right\|_q = \left(\mathbb{E} |X+Y|^p \right)^{1-\frac{1}{p}}$ and the result follows.

Remark 3. We have shown that the map $|||_p$ is a norm by proving the Minkowski's inequality. Therefore, L^p is a normed vector space. We can define distance between two random variables $X_1, X_2 \in L^p$ by the norm $||X_1 - X_2||_p$.