
Lecture-10: Correlation

1 Correlation

Let X : Ω → R and Y : Ω → R be random variables defined on the same probability space (Ω,F, P).

Exercise 1.1. Show that the function g : R2 → R defined by g : (x,y) 7→ xy is a Borel measurable
function.

Definition 1.2 (Correlation). For two random variables X,Y defined on the same probability space, the cor-
relation between these two random variables is defined as E[XY]. If E[XY] = E[X]E[Y], then the random
variables X,Y are called uncorrelated.

Lemma 1.3. If X,Y are independent random variables, then they are uncorrelated.

Proof. It suffices to show for X,Y simple and independent random variables. We can write X =∑x∈X x1AX(x)
and Y = ∑y∈Y y1AY(y). Therefore,

E[XY] = ∑
(x,y)∈X×Y

xyP{AX(x) ∩ AY(y)} = ∑
x∈X

xP(AX(x)) ∑
y∈Y

yP(AY(y)) = E[X]E[Y].

Proof. If X,Y are independent random variables, then the joint distribution FX,Y(x,y) = FX(x)FY(y) for all
(x,y) ∈ R2. Therefore,

E[XY] =
∫
(x,y)∈R2

xydFX,Y(x,y) =
∫

x∈R
xdFX(x)

∫
y∈R

ydFY(y) = E[X]E[Y].

Example 1.4 (Uncorrelated dependent random variables). Let X : Ω → R be a continuous random variable
with even density function fX : R → R+, and g : R → R+ be another even function that is increasing for
y ∈ R+. Then g is Borel measurable function and Y = g(X) is a random variable. Further, we can verify
that X,Y are uncorrelated and dependent random variables.

To show dependence of X and Y, we take positive x,y such that FX(x) < 1 and x > xy where
{

xy
}
=

g−1(y) ∩ R+. Then, we can write the set

AY(y) = Y−1(−∞,y] = X−1[−xy, xy].

Hence, we can write the joint distribution at (x,y) as

FX,Y(x,y) = P{X ⩽ x,Y ⩽ y} = P(AX(x) ∩ AY(y)) = P(AY(y)) = FY(y) ̸= FX(x)FY(y).

Since X has even density function, we have fX(x) = fX(−x) for all x ∈ R. Therefore, we have

EXg(X)1{X<0} =
∫

x<0
xg(x) fX(x)dx =

∫
u>0

(−u)g(−u) fX(−u)du = −EXg(X)1{X>0}.

The last equality follows from the fact that g and fX are even. Therefore, we have

E[Xg(X)] = E[Xg(X)1{X<0}] + E[Xg(X)1{X>0}] = −E[Xg(X)1{X>0}] + E[Xg(X)1{X>0}] = 0.
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Theorem 1.5 (AM greater than GM). For any two random variables X,Y, the correlation is upper bounded by the
average of the second moments, with equality iff X = Y almost surely. That is,

E[XY]⩽
1
2
(EX2 + EY2).

Proof. This follows from the linearity and monotonicity of expectations and the fact that (X − Y)2 ⩾ 0 with
equality iff X = Y.

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X,Y, the correlation of absolute values
of X and Y is upper bounded by the square root of product of second moments, with equality iff X = αY for any
constant α ∈ R. That is,

E |XY|⩽
√

EX2EY2.

Proof. For two random variables X and Y, we can define normalized random variables W ≜ |X|√
EX2 and

Z ≜ |Y|√
EY2 , to get the result.

2 Covariance

Definition 2.1 (Covariance). For two random variables X,Y defined on the same probability space, the
covariance between these two random variables is defined as cov(X,Y)≜ E(X − EX)(Y − EY).

Lemma 2.2. If the random variables X,Y are uncorrelated, then the covariance is zero.

Proof. We can write the covariance of uncorrelated random variables X,Y as

cov(X,Y) = E(X − EX)(Y − EY) = EXY − (EX)(EY) = 0.

Lemma 2.3. Let X : Ω → Rn be an uncorrelated random vector and a = (a1, . . . , an) ∈ Rn, then

Var

(
n

∑
i=1

aiXi

)
=

n

∑
i=1

a2
i Var (Xi) .

Proof. From the linearity of expectation, we can write the variance of the linear combination as

E

(
n

∑
i=1

ai(Xi − EXi)

)2

=
n

∑
i=1

a2
i Var Xi + ∑

i ̸=j
aiaj cov(Xi, Xj).

Definition 2.4 (Correlation coefficient). The ratio of covariance of two random variables X,Y and the
square root of product of their variances is called the correlation coefficient and denoted by

ρX,Y ≜
cov(X,Y)√

Var(X),Var(Y)
.

Theorem 2.5 (Correlation coefficient). For any two random variables X,Y, the absolute value of correlation co-

efficient is less than or equal to unity, with equality iff X = αY + β almost surely for constants α =
√

Var(X)
Var(Y) and

β = EX − αEY.

Proof. For two random variables X and Y, we can define normalized random variables W ≜ X−EX√
Var(X)

and

Z ≜ Y−EY√
Var(Y)

. Applying the AM-GM inequality to random variables W, Z, we get

|cov(X,Y)|⩽
√

Var(X)Var(Y).

Recall that equality is achieved iff W = Z almost surely or equivalently iff X = αY + β almost surely. Taking
U = −Y, we see that −cov(X,Y)⩽

√
Var(X)Var(Y), and hence the result follows.
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3 Lp spaces

Definition 3.1. A pair (p,q) ∈ R2 where p,q ⩾ 1 and 1
p + 1

q = 1, i s called the conjugate pair, and the spaces
Lp and Lq are called dual spaces.

Example 3.2. The dual of L1 space is L∞. The space L2 is dual of itself, and called a Hilbert space.

Theorem 3.3 (Hölder’s inequality). Consider a conjugate pair (p,q) and random variables X ∈ Lp,Y ∈ Lq. Then,

E |XY|⩽ ∥X∥p ∥Y∥q .

Proof. Consider a random variable Z : Ω →{p lnv,q lnw} with probability mass function
{

1
p , 1

q

}
. It follows

from Jensen’s inequality applied to the convex function f (x) = ex and the random variable Z, that

vw = f (EZ)⩽ E f (Z) =
vp

p
+

wq

q
.

It follows that for any random variables V,W, we have VW ⩽ Vp

p + Wq

q . Taking expectation on both sides,

we get from the monotonicity of expectation that EVW ⩽ EVp

p + EWq

q . Taking V ≜ |X|
∥X∥p

and W ≜ |Y|
∥Y∥q

, we

get the result.

Definition 3.4. For a pair of random variables (X,Y) ∈ (Lp, Lq) for conjugate pair (p,q), we can define inner
product ⟨⟩ : Lp × Lq → R by

⟨⟩ (X,Y)≜ ⟨X,Y⟩≜ EXY.

Remark 1. For X ∈ Lp and Y ∈ Lq, the expectation E |XY| is finite from Hölder’s inequality. Therefore, the
inner product ⟨X,Y⟩ = E[XY] is well defined and finite.
Remark 2. This inner product is well defined for the conjugate pair (1,∞).

Theorem 3.5 (Minkowski’s inequality). For 1 ⩽ p < ∞, let X,Y ∈ Lp be two random variables defined on a
probability space (Ω,F, P). Then,

∥X + Y∥p ⩽ ∥X∥p + ∥Y∥p ,

with inequality iff X = αY for some α ⩾ 0 or Y = 0.

Proof. Since addition is a Borel measurable function, X +Y is a random variable. We first show that X +Y ∈
Lp, when X,Y ∈ Lp. To this end, we observe that g : R+ → R+ defined by g(x) = xp for all x ∈ R+, is a
convex function for p ⩾ 1. From the convexity of g, we have∣∣∣∣12 X +

1
2

Y
∣∣∣∣p ⩽ ∣∣∣∣12 |X|+ 1

2
|Y|
∣∣∣∣p = g(

1
2
|X|+ 1

2
|Y|)⩽ 1

2
g(|X|) + 1

2
g(|Y|) = 1

2
|X|p + 1

2
|Y|p .

This implies that |X + Y|p ⩽ 2p−1(|X|p + |Y|p).
The inequality holds trivially if ∥X + Y∥p = 0. Therefore, we assume that ∥X + Y∥p > 0, without any

loss of generality. Using the definition of ∥∥p, triangle inequality, and linearity of expectation we get

∥X + Y∥p
p = E[|X + Y| |X + Y|p−1]⩽ E([|X|+ |Y|) |X + Y|p−1] = E |X| |X + Y|p−1 + E |Y| |X + Y|p−1 .

From the Hölder’s inequality applied to conjugate pair (p,q) to the two products on RHS, we get

∥X + Y∥p
p ⩽ (∥X∥p + ∥Y∥p)

∥∥∥|X + Y|p−1
∥∥∥

q

Recall that q = p
p−1 . Therefore,

∥∥∥|X + Y|p−1
∥∥∥

q
= (E |X + Y|p)1− 1

p and the result follows.

Remark 3. We have shown that the map ∥∥p is a norm by proving the Minkowski’s inequality. Therefore, Lp

is a normed vector space. We can define distance between two random variables X1, X2 ∈ Lp by the norm
∥X1 − X2∥p.
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