Lecture-10: Correlation

1 Correlation

Let X: Q — Rand Y : Q) — R be random variables defined on the same probability space (), F, P).

Exercise 1.1. Show that the function ¢ : R? — R defined by ¢ : (x,y) — xy is a Borel measurable
function.

Definition 1.2 (Correlation). For two random variables X, Y defined on the same probability space, the cor-
relation between these two random variables is defined as E[XY]. If E[XY] = E[X]E][Y], then the random
variables X,Y are called uncorrelated.

Lemma 1.3. If X, Y are independent random variables, then they are uncorrelated.

Proof. 1t suffices to show for X, Y simple and independent random variables. We can write X =} cx x1 4, ()
and Y =Y cyyla, (). Therefore,

E[XY]= )  xyP{Ax(x)NAy(y)} = ) xP(Ax(x)) }_ yP(Ay(y)) = E[X]E[Y].
(xy)eXxY xeX yeyY
O

Proof. 1If X,Y are independent random variables, then the joint distribution Fx y(x,y) = Fx(x)Fy(y) for all
(x,y) € R2. Therefore,

E[XY] = /

xe

xdFx(x) /y _ ViFy(y) = EIXJE[Y].

Example 1.4 (Uncorrelated dependent random variables). Let X : () — R be a continuous random variable
with even density function fx : R — R, and g : R — IR be another even function that is increasing for
y € R;. Then g is Borel measurable function and Y = g(X) is a random variable. Further, we can verify
that X, Y are uncorrelated and dependent random variables.

To show dependence of X and Y, we take positive x,y such that Fx(x) < 1 and x > x, where {x,} =

¢ '(y) NIR.. Then, we can write the set

Ay(y) =Y (—oo,y] = X7 [~y xy).

Hence, we can write the joint distribution at (x,y) as
Fxy(xy) = P{X <x,Y <y} = P(Ax(x) N Ay (y)) = P(Ay (y)) = Fr(y) # Fx(x)Fy (y)-
Since X has even density function, we have fx(x) = fx(—x) for all x € R. Therefore, we have
EXg(X)Lix<op = | _ x(@)fx(@)dx= | (-=w)g(=u)fx(~u)du = ~EXg(X)1{x50)-
The last equality follows from the fact that g and fx are even. Therefore, we have

E[Xg(X)] = E[Xg(X)1{x<0}] + E[Xg(X)1{x>0y] = —E[Xg(X)1{x>0}] + E[Xg(X)1{x50] = 0.

>0



Theorem 1.5 (AM greater than GM). For any two random variables X, Y, the correlation is upper bounded by the
average of the second moments, with equality iff X =Y almost surely. That is,

1
E[XY] < E(1EX2 + EY?).
Proof. This follows from the linearity and monotonicity of expectations and the fact that (X — Y)? > 0 with
equality iff X =Y. O

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X, Y, the correlation of absolute values
of X and Y is upper bounded by the square root of product of second moments, with equality iff X = aY for any

constant « € R. That is,
E|XY| < VEX2EY?2.

Proof. For two random variables X and Y, we can define normalized random variables W £ 1XI

VEX?2

E \)&, to get the result. O

and

2 Covariance

Definition 2.1 (Covariance). For two random variables X,Y defined on the same probability space, the
covariance between these two random variables is defined as cov(X,Y) £ E(X — EX)(Y — EY).

Lemma 2.2. If the random variables X,Y are uncorrelated, then the covariance is zero.

Proof. We can write the covariance of uncorrelated random variables X,Y as

cov(X,Y) =E(X — EX)(Y — EY) = EXY — (EX)(EY) =0.

O

Lemma 2.3. Let X : O — R" be an uncorrelated random vector and a = (ay,...,a,) € R", then

n n
Var | Y_a;X; | =Y a?Var (X;).
i=1 i=1
Proof. From the linearity of expectation, we can write the variance of the linear combination as
n 2 n
E Zai(Xi —-EX;) | = Za?VarXi+2al~ajcov(Xi,Xj).
i=1 i=1 i£

O

Definition 2.4 (Correlation coefficient). The ratio of covariance of two random variables X,Y and the
square root of product of their variances is called the correlation coefficient and denoted by

N cov(X,Y)
PXY = .
Var(X), Var(Y)

Theorem 2.5 (Correlation coefficient). For any two random variables X,Y, the absolute value of correlation co-
efficient is less than or equal to unity, with equality iff X = aY + B almost surely for constants & = \\izig; and
B=EX —«aEY.

Proof. For two random variables X and Y, we can define normalized random variables W = % and

ar

zZs %. Applying the AM-GM inequality to random variables W, Z, we get
|cov(X,Y)| < 4/ Var(X) Var(Y).

Recall that equality is achieved iff W = Z almost surely or equivalently iff X = aY + B almost surely. Taking
U = —Y, we see that —cov(X,Y) < /Var(X) Var(Y), and hence the result follows. O



3 L7 spaces

Definition 3.1. A pair (p,q) € R?> where p,q > 1 and % + % =1, is called the conjugate pair, and the spaces
L? and L1 are called dual spaces.

Example 3.2. The dual of L! space is L*. The space L? is dual of itself, and called a Hilbert space.

Theorem 3.3 (Holder’s inequality). Consider a conjugate pair (p,q) and random variables X € LP,Y € L1. Then,

EIXY| < [[X]], 1Yl
Proof. Consider a random variable Z : 3 — {pInv,glnw} with probability mass function {%, % } It follows
from Jensen’s inequality applied to the convex function f(x) = e* and the random variable Z, that
p q
vw = f(EZ) <Ef(Z) =% + 2.
p 9
It follows that for any random variables V,W, we have VW < VTP + WTq Taking expectation on both sides,

we get from the monotonicity of expectation that EVIW < IE%/P + ]Equ. Taking V £ ﬁ and W £ M, we
P 9

get the result. 0O

Definition 3.4. For a pair of random variables (X,Y) € (L, L7) for conjugate pair (p,q), we can define inner
product () : LP x L7 — R by

() (X,Y) & (X,Y) £ EXY.
Remark 1. For X € LP and Y € L1, the expectation [E | XY/ is finite from Holder’s inequality. Therefore, the
inner product (X,Y) = E[XY] is well defined and finite.
Remark 2. This inner product is well defined for the conjugate pair (1,00).
Theorem 3.5 (Minkowski’s inequality). For 1 < p < oo, let X,Y € L? be two random variables defined on a
probability space (O3, F, P). Then,

X+ Y, < Xl + Y1,
with inequality iff X = aY for some « > 0orY = 0.
Proof. Since addition is a Borel measurable function, X + Y is a random variable. We first show that X +Y &

L?, when X,Y € LP. To this end, we observe that ¢ : R, — R defined by g(x) = x” forall x € Ry, is a
convex function for p > 1. From the convexity of g, we have
1 1|7
“X+zZY
e
This implies that | X + Y|P < 2P~ 1(|X|P +|Y|P).
The inequality holds trivially if [ X +Y||,, = 0. Therefore, we assume that || X + Y||, > 0, without any
loss of generality. Using the definition of |||, triangle inequality, and linearity of expectation we get

1 1 P 1 1 1 1 1 1
<= = =9o(= = <= = =_|X|"+=|Y|".

IX+ YD =E[X+Y[[X+ Y <SE(X]|+ [Y) X+ Y =EX[|X+Y[PT+E[Y]|X + Y|P
From the Holder’s inequality applied to conjugate pair (p,q) to the two products on RHS, we get

-1
1+ Y15 < (X, + 1Y) [1X + 17|
q

1
Recall that g = 2. Therefore, (E|X + Y|?)' "7 and the result follows. O

p—1°

X +Y[P! H -
q
Remark 3. We have shown that the map |||, is a norm by proving the Minkowski’s inequality. Therefore, L”

is a normed vector space. We can define distance between two random variables X1, X, € L? by the norm
X1 = Xal[,,
p
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