
Lecture-11: Generating functions

1 Generating functions

Suppose that X : Ω →R is a continuous random variable on the probability space (Ω,F, P) with distribution
function FX : R → [0,1].

1.1 Characteristic function

Example 1.1. Let j ≜
√
−1, then we can show that hu : R → C defined by hu(x)≜ ejux = cos(ux) + jsin(ux)

is also Borel measurable for all u ∈ R. Thus, hu(X) : Ω → C is a complex valued random variable on this
probability space.

Definition 1.2. For a random variable X : Ω → R defined on the probability space (Ω,F, P), the character-
istic function ΦX : R → C is defined by ΦX(u)≜ EejuX for all u ∈ R and j2 = −1.

Remark 1. The characteristic function ΦX(u) is always finite, since |ΦX(u)| =
∣∣EejuX

∣∣⩽ E
∣∣ejuX

∣∣ = 1.

Remark 2. For a discrete random variable X : Ω → X with PMF PX : X → [0,1], the characteristic function
ΦX(u) = ∑x∈X ejuxPX(x).

Remark 3. For a continuous random variable X : Ω→R with density function fX : R→R+, the characteristic
function ΦX(u) =

∫ ∞
−∞ ejuX fX(x)dx.

Example 1.3 (Gaussian random variable). For a Gaussian random variable X : Ω → R with mean µ and
variance σ2, the characteristic function ΦX is

ΦX(u) =
1√

2πσ2

∫
x∈R

ejuxe−
(x−µ)2

2σ2 dx = exp
(
− u2σ2

2
+ juµ

)
.

We observe that |ΦX(u)| = e−u2σ2/2 has Gaussian decay with zero mean and variance 1/σ2.

Theorem 1.4. If E |X|N is finite for some integer N ∈ N, then Φ(k)
X (u) is finite and continuous functions of u ∈ R

for all k ∈ [N]. Further, Φ(k)
X (0) = jkE[Xk] for all k ∈ [N].

Proof. Since E |X|N is finite, then so is E |X|k for all k ∈ [N]. Therefore, E[Xk] exists and is finite. Exchanging
derivative and the integration (which can be done since ejux is a bounded function with all derivatives), and

evaluating the derivative at u = 0, we get Φ(k)
X (0) = E

[
dkejuX

duk

∣∣∣
u=0

]
= jkE[Xk].

Theorem 1.5. Two random variables have the same distribution iff they have the same characteristic function.

Proof. It is easy to see the necessity and the sufficiency is difficult.

1



1.2 Moment generating function

Example 1.6. A function gt : R → R+ defined by gt(x) ≜ etx is monotone and hence Borel measurable for
all t ∈ R. Therefore, gt(X) : Ω → R+ is a positive random variable on this probability space.

Definition 1.7. For a random variable X : Ω → R defined on the probability space (Ω,F, P), the moment
generating function MX : R → R+ is defined by MX(t)≜ EetX for all t ∈ R where MX(t) is finite.

Remark 4. Characteristic function always exist, however are complex in general. Sometimes it is easier to
work with moment generating functions, when they exist.

Lemma 1.8. For a random variable X, if the MGF MX(t) is finite for some t ∈R, then MX(t) = 1+∑n∈N
tn

n! E[Xn].

Proof. From the Taylor series expansion of eθ around θ = 0, we get eθ = 1 + ∑n∈N
θn

n! . Therefore, taking
θ = tX, we can write etX = 1 + ∑n∈N

tn

n! Xn. Taking expectation on both sides, the result follows from the
linearity of expectation, when both sides have finite expectation.

Example 1.9 (Gaussian random variable). For a Gaussian random variable X : Ω → R with mean µ and

variance σ2, the moment generating function MX is MX(t) = exp
(

t2σ2

2 + tµ
)

.

1.3 Probability generating function

For a non-negative integer-valued random variable X : Ω → X ⊆ Z+, it is often more convenient to work
with the z-transform of the probability mass function, called the probability generating function.

Definition 1.10. For a discrete non-negative integer-valued random variable X : Ω → X⊆ Z+ with proba-
bility mass function PX : X→ [0,1], the probability generating function ΨX : C → C is defined by

ΨX(z)≜ E[zX ] = ∑
x∈X

zxPX(x), z ∈ C, |z|⩽ 1.

Lemma 1.11. For a non-negative simple random variable X : Ω → X, we have |ΨX(z)|⩽ 1 for all |z|⩽ 1.

Proof. Let z ∈ C with |z|⩽ 1. Let PX : X→ [0,1] be the probability mass function of the non-negative simple
random variable X. Since any realization x ∈ X of random variable X is non-negative, we can write

|ΨX(z)| =
∣∣∣∣∣ ∑
x∈X

zxPX(x)

∣∣∣∣∣⩽ ∑
x∈X

|z|x PX(x)⩽ ∑
x∈X

PX(x) = 1.

Theorem 1.12. For a non-negative simple random variable X : Ω → X with finite kth moment EXk, the k-th deriva-
tive of probability generating function evaluated at z = 1 is the k-th order factorial moment of X. That is,

Ψ(k)
X (1) = E

[
k−1

∏
i=0

(X − i)

]
= E[X(X − 1)(X − 2) . . . (X − k + 1)].

Proof. It follows from the interchange of derivative and expectation.
Remark 5. Moments can be recovered from kth order factorial moments. For example,

E[X] = Ψ
′
X(1), E[X2] = Ψ(2)

X (1) + Ψ
′
X(1).
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Theorem 1.13. Two non-negative integer-valued random variables have the same probability distribution iff their
z-transforms are equal.

Proof. The necessity is clear. For sufficiency, we see that Ψ(k)
X = ∑x⩾k k!zx−kPX(x) and hence Ψ(k)

X (0) =
k!PX(k). Further, interchanging the derivative and the summation (by dominated convergence theorem),
we get the second result.

2 Gaussian Random Vectors

Definition 2.1. For a random vector X : Ω → Rn defined on a probability space (Ω,F, P), we can define the
characteristic function ΦX : Rn → C by ΦX(u)≜ Eej⟨u,X⟩ where u ∈ Rn.

Remark 6. If X : Ω → Rn is an independent random vector, then ΦX(u) = ∏n
i=1 ΦXi (ui) for all u ∈ Rn.

Definition 2.2. For a probability space (Ω,F, P), Gaussian random vector is a continuous random vector
X : Ω → Rn defined by its density function

fX(x)≜
1√

(2π)n det(Σ)
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
for all x ∈ Rn,

where the vector µ ∈ Rn and the positive definite matrix Σ ∈ Rn×n.

Remark 7. For a Gaussian random vector with vector µ = (µ1, . . . ,µ1) for some real scalar µ1 and matrix Σ =

σ2 I for some positive σ2 ∈R+, we can write its density as fX(x) = 1
(2πσ2)n/2 exp

(
− 1

2 ∑n
i=1

(xi−µ1)
2

σ2

)
for all x ∈

Rn. It follows that X is an i.i.d. random vector with each component being a Gaussian random variable with
mean µ1 and variance σ2. The characteristic function ΦX of an i.i.d. Gaussian random vector X : Ω → Rn

parametrized by (µ1,σ2) is given by ΦX(u) = ∏n
i=1 ΦXi (ui) = exp

(
− σ2

2 ∑n
i=1 u2

i + jµ1 ∑n
i=1 ui

)
.

Lemma 2.3. For an i.i.d. zero mean unit variance Gaussian vector Z : Ω → Rn, vector α ∈ Rn, and scalar µ ∈ R,
the affine combination Y ≜ µ + ⟨α, Z⟩ is a Gaussian random variable.

Proof. From the linearity of expectation and the fact that Z is a zero mean vector, we get EY = µ. Further,
from the linearity of expectation and the fact that E[ZZT ] = I, we get

σ2 ≜ Var(Y) = E(Y − µ)2 =
n

∑
i=1

n

∑
k=1

αiαkE[ZiZk] = ⟨α,α⟩ = ∥α∥2
2 =

n

∑
i=1

α2
i .

To show that Y is Gaussian, it suffices to show that ΦY(u) = exp(− u2σ2

2 + juµ) for any u ∈ R. Recall that
Z is an independent random vector with individual components being identically zero mean unit variance
Gaussian. Therefore, ΦZi (u) = exp(− u2

2 ), and we can compute the characteristic function of Y as

ΦY(u) = EejuY = ejuµE
n

∏
i=1

ejuαiZi = ejuµ
n

∏
i=1

ΦZi (uαi) = exp(−u2σ2

2
+ juµ).

Theorem 2.4. A random vector X : Ω → Rn is Gaussian with parameters (µ,Σ) iff Z ≜ Σ− 1
2 (X − µ) is an i.i.d.

zero mean unit variance Gaussian random vector.

Proof. Let X = µ + Σ
1
2 Z for an i.i.d. zero mean unit variance Gaussian random vector Z : Ω → Rn, then

we will show that X is a Gaussian random vector by transformation of random vector densities. Since

the (i, j)th component of the Jacobian matrix J(x) is given by Jij(x) =
∂xj
∂zi

= Σ
1
2
i,j for all i, j ∈ [n], we can
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write the Jacobian matrix J(x) = Σ
1
2 , Since the density of Z is fZ(z) = 1√

(2π)n
exp(− 1

2 zTz), and from the

transformation of random vectors, we get

fX(x) =
fZ(Σ− 1

2 (x − µ))

det(Σ
1
2 )

=
1

(2π)n/2 det(Σ)1/2 exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)
, x ∈ Rn.

Conversely, we can show that if X is a Gaussian random vector, then Z = Σ− 1
2 (X − µ) is an i.i.d. zero

mean unit variance Gaussian random vector by transformation of random vectors.

Remark 8. A random vector X : Ω → Rn with mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n is Gaussian
iff X can be written as X = µ + Σ

1
2 Z, for an i.i.d. Gaussian random vector Z : Ω → Rn with mean 0 and

variance 1. It follows that EX = µ and Σ = E(X − µ)(X − µ)T .

Remark 9. We observe that the components of the Gaussian random vector X = µ + AZ for A = Σ
1
2 are

Gaussian random variables with mean µi and variance ∑n
k=1 A2

i,k = (AAT)i,i = Σi,i, since each component
Xi = µi + ∑n

k=1 Ai,kZk is an affine combination of zero mean unit variance i.i.d. random variables.
Remark 10. For any u ∈ Rn, we compute the characteristic function ΦX from the distribution of Z as

ΦX(u) = Eej⟨u,X⟩ = Eexp
(

j ⟨u,µ⟩+ j
〈

ATu, Z
〉)

= exp(j ⟨u,µ⟩)ΦZ(ATu) = exp(j ⟨u,µ⟩ − 1
2

uTΣu).

Lemma 2.5. If the components of the Gaussian random vector are uncorrelated, then they are independent.

Proof. If a Gaussian vector is uncorrelated, then the covariance matrix Σ is diagonal. It follows that we can
write fX(x) = ∏n

i=1 fXi (xi) for all x ∈ Rn.
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