
Lecture-12: Conditional Expectation

1 Conditional expectation given a non trivial event

Consider a probability space (Ω,F, P) and an event B ∈ F such that P(B) > 0. Then, the conditional proba-
bility of any event A ∈ F given an event B is defined as

P(A
∣∣ B) =

P(A ∩ B)
P(B)

.

Consider a random variable X : Ω → R defined on a probability space (Ω,F, P), with distribution function
FX : R → [0,1], and a non trivial event B ∈ F such that P(B) > 0.

Definition 1.1. The conditional distribution of X given event B is denoted by FX|B : R → [0,1] and FX|B(x)
is defined as the probability of event AX(x)≜ X−1(−∞, x] conditioned on event B for all x ∈ R. That is,

FX|B(x)≜ P(AX(x)|B) = P(AX(x) ∩ B)
P(B)

for all x ∈ R.

Remark 1. The conditional distribution FX|B is a distribution function. This follows from the fact that (i)
FX|B ⩾ 0, (ii) FX|B is right continuous, (iii) limx↓−∞ FX|B(x) = 0 and limx↑∞ FX|B(x) = 1.

Remark 2. For a discrete random variable X : Ω → X, the conditional probability mass function of X given

a non trivial event B is given by PX|B(x) = P(X−1{x}∩B)
P(B) for all x ∈ X.

Remark 3. For a continuous random variable X : Ω → R, the conditional density of X given a non trivial

event B is given by fX|B(x) =
dFX|B(x)

dx for all x ∈ R.

Example 1.2 (Conditional distribution). Consider the probability space (Ω,F, P) corresponding to a ran-
dom experiment where a fair die is rolled once. For this case, the outcome space Ω = [6], the event space
F = P([6]), and the probability measure P(ω) = 1

6 for all ω ∈ Ω.
We define a random variable X : Ω → R such that X(ω) = ω for all ω ∈ Ω, and an event B ≜

{ω ∈ Ω : X(ω)⩽ 3} = [3] ∈ F. We note that P(B) = 0.5 and the conditional PMF of X given B is

PX|B(x) =
1
3
1{x=3} +

1
3
1{x=2} +

1
3
1{x=1}.

Definition 1.3. The conditional expectation of X given event B is given as E[X|B]≜
∫

x∈R
xdFX|B(x).

Remark 4. For a discrete random variable X : Ω → X, the conditional expectation of X given a non trivial
event B is given by E[X|B] = ∑x∈X xPX|B(x).

Example 1.4 (Conditional expectation). For the random variable X and event B defined in Example 1.2,
the conditional expectation E[X|B] = 2.
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Remark 5. Consider two random variables X,Y defined on this probability space, then for y ∈ R such that
FY(y) > 0, we can define events AX(x)≜ X−1(−∞, x] and AY(y) = Y−1(−∞,y], such that

P
(
{X ⩽ x}

∣∣ {Y ⩽ y}
)
=

FX,Y(x,y)
FY(y)

.

The key observation is that {Y ⩽ y} is a non-trivial event. How do we define conditional expectation based
on events such as {Y = y}? When random variable Y is continuous, this event has zero probability measure.

2 Conditional expectation given an event space

Consider random variables X : Ω → R and Y : Ω → R defined on the same probability space (Ω,F, P) such
that E |X| < ∞, and a smaller event space G⊂ F. For each non trivial event G ∈ G, we know how to define
the conditional distribution FX|G and E[X|G]. For any trivial event N ∈ G, these are undefined.

Definition 2.1. The conditional expectation of random variable X given event space G is a random vari-
able E[X

∣∣ G] : Ω → R defined on the same probability space, such that
(i) Z ≜ E[X

∣∣ G] is G measurable,
(ii) for all G ∈ G, we have E[X1G] = E[Z1G],

(iii) E |Z| < ∞.

Lemma 2.2. The conditional expectation of X given G is an a.s. unique random variable.

Proof. Consider two random variables Z1 = E[X|G] and Z2 = E[X|G]. Then from the definition, Z1, Z2 are G

measurable random variables, and Z1 − Z2 is also G measurable. Therefore, Gn ≜
{

Z1 − Z2 >
1
n

}
∈ G and

E[(Z1 − Z2)1Gn ] = 0 by definition. It follows from continuity of probability, that P(limn Gn) = 0. Similarly,

defining Fn ≜
{

Z2 − Z1 >
1
n

}
, we can show that P(limn Fn) = 0.

Example 2.3 (Conditional expectation as averaging). Consider a random variable X : Ω → R defined on
a probability space (Ω,F, P) with E |X| < ∞, and the coarsest event space G= {∅,Ω} ⊆ F and finest event
space F. We observe that E[X|G] = EX a.s. uniquely, since (i) EX is a constant and hence G measurable,
(ii) E[EX1∅] = E[X1∅] = 0 and E[EX1Ω] = E[X1Ω] = EX, and (iii) E |EX| = |EX| ⩽ E |X| < ∞ from the
Jensen’s inequality.

We also observe that E[X|F] = X a.s. uniquely, since (i) X is F measurable random variable, (ii)
E[X1G] = E[X1G] for all events G ∈ F, and (iii) E |X| < ∞.

Lemma 2.4. The mean of conditional expectation of random variable X given event space G is EX.

Proof. From the definition of event space Ω ∈ G, and from the definition of conditional expectation, we get
E[E[X | G]] = E[E[X | G]1Ω] = E[X1Ω] = EX.

Definition 2.5. The conditional expectation of X given Y is a random variable E[X
∣∣ Y] ≜ E[X

∣∣ σ(Y)]
defined on the same probability space.

Example 2.6 (Conditioning on simple random variables). For a simple random variable Y : Ω → Y ⊆ R

defined on the probability space (Ω,F, P), we define fundamental events Ey ≜ Y−1 {y} ∈ F for all y ∈ Y.
Then the sequence of events E ≜ (Ey ∈ F : y ∈ Y) partitions the sample space, and we can write the event
space generated by random variable Y as σ(Y) = (∪y∈I Ey : I ⊆ Y).

For a random variable X : Ω → R defined on the same probability space, the random variable Z ≜
E[X

∣∣ Y] is σ(Y) measurable. Therefore, E[X|Y] = ∑y∈Y αy1Ey for some α ∈ RY. We verify that Z : Ω → R
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is a σ(Y) measurable random variable, since σ(Z) ⊆ σ(Y). We can also check that E |Z| < ∞. Further, we

have E[Z1Ey ] = E[X1Ey ] for any y ∈ Y, which implies that αy =
E[X1Ey ]

PY(y)
for any y ∈ Y. Notice that

E[X | Ey] =
∫

x∈R
xdFX|Ey(x) =

1
PY(y)

∫
x∈R

xdP(AX(x) ∩ Ey) =
1

PY(y)
E[X1Ey ] = αy.

Remark 6. There are three main takeaways from this definition. For a random variable Y, the event space
generated by Y is σ(Y).

1. The conditional expectation E[X|Y] = E[X|σ(Y)] and is σ(Y) measurable. That is, E[X|Y] is a Borel
measurable function of Y. In particular when Y is discrete, this implies that E[X|Y] is a simple random
variable that takes value E[X|Ey] when ω ∈ Ey, and the probability of this event is PY(y). When Y is
continuous, E[X|Y] is a continuous random variable with density fY.

2. Expectation is averaging. Conditional expectation is averaging over event spaces. We can observe
that the coarsest averaging is E[X| {∅,Ω}] = EX and the finest averaging is E[X|σ(X)] = X. Further,
E[X|σ(Y)] is averaging of X over events generated by Y. If we take any event A ∈ σ(Y) generated by
Y, then the conditional expectation of X given Y is fine enough to find the averaging of X when this
event occurs. That is, E[X1A] = E[E[X|Y]1A].

3. If X ∈ L1, then the conditional expectation E[X|Y] ∈ L1.

3 Conditional distribution given an event space

Definition 3.1. The conditional probability of an event A ∈ F given event space G is defined as P(A | G)≜
E[1A | G].

Remark 7. From the definition of conditional expectation, it follows that P(A | G) : Ω → [0,1] is a G measur-
able random variable, such that E[1GP(A|G)] = P(A ∩ G) for all G ∈ G, and is uniquely defined up to sets
of probability zero.

Example 3.2. For the trivial sigma algebra G = {∅,Ω}, the conditional probability is the constant function
P(A | {∅,Ω}) = P(A).

Example 3.3. If A ∈ G, then P(A | G) = 1A.

Definition 3.4. The conditional distribution of random variable X given sub event space G is defined as
FX|G(x)≜ P(AX(x) | G) for all x ∈ R.

Remark 8. Recall that FX|G(x) : Ω → [0,1] a random variable, for each x ∈ R. Further, we observe that FX|G
is monotone nondecreasing in x ∈ R, right continuous at all x ∈ R, and has limits limx↓−∞ FX|G(x) = 0 and
limx↑∞ FX|G(x) = 1. It follows that FX|G : Ω → [0,1]R is a random distribution.

Theorem 3.5. Let g : R → R be a Borel measurable function and G be a sub-event space. Then, the conditional
expectation E[g(X) | G] =

∫
x∈R

g(x)dFX|G(x).

Proof. It suffices to show this for simple random variables X : Ω → X. Since g is Borel measurable, then
g(X) is a random variable. We will show that E[g(X) | G] = ∑x∈X g(x)PX|G(x) by showing that it satis-
fies three properties of conditional expectation. For part (i), we observe that from the definition of condi-
tional probability PX|G(x) is a G-measurable random variable for all x ∈ X, and so is the linear combination
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∑x∈X g(x)PX|G(x). For part (ii), we let G ∈ G. Then, it follows from the linearity of expectation and the
definition of conditional probability, that

E[ ∑
x∈X

g(x)PX|G(x)1G] = ∑
x∈X

g(x)E[PX|G(x)1G] = ∑
x∈X

g(x)E[1Ex∩G] = E[X1G].

For part (iii), it follows from the triangle inequality, the linearity of expectation, and the definition of condi-
tional probability that E

∣∣∣∑x∈X g(x)PX|G(x)
∣∣∣⩽ ∑x∈X |g(x)|EPX|G(x) = ∑x∈X |g(x)|PX(x) = E |X|< ∞.

Remark 9. The conditional characteristic function is given by ΦX|G(u) = E[ejuX | G] =
∫

x∈R
ejuxdFX|G(x).

Definition 3.6. The conditional distribution of random variable X given random variable Y is defined as
FX|Y(x)≜ P(AX(x) | σ(Y)] for all x ∈ R.

Example 3.7 (Conditional distribution given simple random variables). Consider a random variable X :
Ω → R and a simple random variable Y : Ω → Y defined on the same probability space. Since random
variables FX|Y(x) = E[1AX(x) | Y] are σ(Y) measurable, they can can be written as FX|Y(x) = ∑y∈Y βx,y1Ey

for some βx ∈ RY and Ey = Y−1 {y} for all y ∈ Y. Further, we have E[FX|Y(x)1Ey ] = E[1AX(x)1Ey ] for

any y ∈ Y, which implies that βx,y =
P(AX(x)∩Ey)

PY(y)
= FX|Ey(x) for any y ∈ Y. It follows that FX|Y is a σ(Y)

measurable simple random variable.

Example 3.8 (Conditional expectation). Consider a random experiment of a fair die being thrown and a
random variable X : Ω → R taking the value of the outcome of the experiment. That is, for outcome space
Ω = [6] and event space F=P(Ω), we have X(ω) = ω with PX(x) = 1/6 for x ∈ [6]. Define another random
variable Y = 1{X⩽3}. Then the conditional expectation of X given Y is a random variable given by

E[X|Y] = E[X | {Y = 1}]1{Y=1} + E[X | {Y = 1}]1{Y=0} = 21Y−1(1) + 51Y−1(0).

Since P{Y = 1} = P{Y = 0} = 0.5, it follows that that E[E[X|Y]] = E[X] = 3.5.

Example 3.9 (Conditional distribution). Consider the zero-mean Gaussian random variable N : Ω → R

with variance σ2, and another independent random variable Y ∈ {−1,1} with PMF (1 − p, p) for some
p ∈ [0,1]. Let X = Y + N, then the conditional distribution of X given simple random variable Y is

FX|Y = FX|Y−1(−1)1Y−1(−1) + FX|Y−1(1)1Y−1(1),

where FX|Y−1(µ) is
∫ x
−∞ e−

(t−µ)2

σ2 dt.

Definition 3.10. When X,Y are both continuous random variables, there exists a joint density fX,Y(x,y) for
all (x,y) ∈ R2. For each y ∈ Y such that fY(y) > 0, we can define a function fX|Y : R2 → R+ such that

fX|Y(x,y)≜
fX,Y(x,y)

fY(y)
, for all x ∈ R.

Exercise 3.11. For continuous random variables X,Y, show that the function fX|Y−1(y) is a density of
continuous random variable X for each y ∈ R.
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