Lecture-14: Almost sure convergence

1 Point-wise convergence

Consider a random sequence X : () — RN defined on a probability space (), F, P), then each X, 2 ,0X:
() — R is a random variable. There are many possible definitions for convergence of a sequence of random
variables. One idea is to consider X(w) € RN as a real valued sequence for each outcome w, and consider
the lim,, X, (w) for each outcome w.

Definition 1.1. A random sequence X : QO — RN defined on a probability space (Q),F, P) converges point-
wise to a random variable X : O — R, if for all outcomes w € ), we have

Iim X, (w) = Xeo(w).
n
Remark 1. This is a very strong convergence. Intuitively, what happens on an event of probability zero is

not important. We will strive for a weaker notion of convergence, where the sequence of random variable
converge point-wise on a set of outcomes with probability one.

2 Almost sure statements

Definition 2.1. A statement holds almost surely (a.s.) if there exists an event called the exception set N € &
with P(N) = 0 such that the statement holds for all w ¢ N.

Example 2.2 (Almost sure equality). Two random variables X,Y defined on the probability space
(Q),F,P) are said to be equal a.s. if the following exception set

N2{weQ:X(w) #Y(w)} €T,

has probability measure P(N) = 0. Then Y is called a version of X, and we can define an equivalence
class of a.s. equal random variables.

Example 2.3 (Almost sure monotonicity). Two random variables X, Y defined on the probability space
(Q,F,P) are said to be X < Y a.s. if the exception set N £ {w € Q: X(w) > Y(w)} € F has probability
measure P(N) = 0.

3 Almost sure convergence

Definition 3.1 (Almost sure convergence). A random sequence X : ) — RN defined on the probability
space (Q),F,P) converges almost surely, if the following exception set

N2 {w €eQ: limingn(w) < limsup X, (w) or limsup X, (w) = oo} €7,
n n

has zero probability. Let X be the point-wise limit of the sequence of random variables X : O — RN on
the set N¢, then we say that the sequence X converges almost surely to X, and denote it as

IimX,, = X« a.s.
n



Example 3.2 (Convergence almost surely but not everywhere). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. For each n € N, we define the scaled
indicator random variable X, : 3 — {0,1} such that

Let N = {0}, then for any w ¢ N, there exists m = [%1 € N, such that for all n > m, we have X, (w) = 0.
That is, lim,, X;, = 0 a.s. since A(N) = 0. However, X;,(0) = n for all n € IN.

4 Convergence in probability

Definition 4.1 (convergence in probability). A random sequence X : Q — RN defined on the probability
space (Q),%,P) converges in probability to a random variable X : Q — R, if lim, P(A,(€)) = 0 for any
€ > 0, where

An(e) 2 {w e Q: | Xp(w) — Xeo(w)| > €} € F.
Remark 2. lim, X,, = X a.s. means that for almost all outcomes w, the difference X, (w) — X (w) gets
small and stays small.

Remark 3. lim, X;, = X 1.p. is a weaker convergence than a.s. convergence, and merely requires that the
probability of the difference X, (w) — Xeo(w) being non-trivial becomes small.

Example 4.2 (Convergence in probability but not almost surely). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. For each k € IN, we consider the se-
quence Sy = Ele i, and define integer intervals I = {Sy_; +1,...,S;}. Clearly, the intervals (I : k € IN)
partition the natural numbers, and each n € IN lies in some I , such that n = S _1 + i, for i, € [ky].
Therefore, for each n € IN, we define indicator random variable X,, : 3 — {0,1} such that

Xn(w) = i1 m](w)'
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For any w € [0,1], we have X,,(w) =1 for infinitely many values since there exist infinitely many (i, k)

pairs such that (1;1) <w< %, and hence limsup, X, (w) = 1 and hence lim, X, (w) # 0. However,
lim,, X;,(w) = 0 in probability, since

. .1
hrrln)\{Xn(w) #0} = hignE =0.

5 Infinitely often and all but finitely many

Lemma 5.1 (infinitely often and all but finitely many). Let A € TN be a sequence of events.

(a) For some subsequence (ky, : n € IN) depending on w, we have

limsupA, ={weQ:we A foralln c N} = {w €0: ) 14, (w)= oo} = { A, infinitely often }.
n neN

(b) For a finite ng(w) € N depending on w, we have

liminfA, ={w e Q:w e Ay foralln > ny(w)} = {w €0: ) Ta(w)< oo} = { Ay, for all but finitely many n} .
" nelN
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Proof. Let A € 7N be a sequence of events.

(a) Let w € limsup, Ay = NyeN Uksn Ak, then w € Uy, A for all n € IN. Therefore, for each n € IN, there
exists k, € N such that w € A, , and hence

Y la(w)= ), 1a, (w)=co.
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Conversely, if } ;e 1 Aj (w) = oo, then for each n € IN there exists a k, € N such that w € Ay, and hence
w € Ugs, Ay foralln € IN.

(b) Let w € liminf, Ay = UpeN Ni>p Ax, then there exists np(w) such that w € A, for all n > np(w). Con-
versely, if Y e ]1A]c_ (w) < oo, then there exists 1y (w) such that w € A, for all n > nyp(w).

O

Theorem 5.2 (Convergence a.s. implies in probability). Ifa sequence of random variables X : Q — RN defined
on a probability space (Q),F, P) converges a.s. to a random variable X« : Q) — R, then it converges in probability to
the same random variable.

Proof. Let lim, X, = X« a.s. and € > 0. We define events A, = {w € O : | X, (w) — Xe(w)| > €} for each
n € N. We will show that lim, P(A,) = 0. To this end, let N be the exception set such that

N = {w € O :liminf X, (w) < limsup X, (w) or limsup X, (w) = oo}.
n n n

For w ¢ N, there exists an ny(w) such that | X, — X«| < € for all n > ng. Thatis, w € A§ for all n > np(w)
and hence N°¢ C liminf, Aj,. It follows that 1 = P(liminf, A},). Since liminf, Aj, = (limsup, A;;)¢, we get
0 = P(limsup, A,) = limy, P(Uy>, Ax) = lim, P(A,) > 0. O

6 Borel-Cantelli Lemma
Proposition 6.1 (Borel-Cantelli Lemma). Let A € FN be a sequence of events such that ¥, P(Ay) < o0, then
P{A,io0.}=0.

Proof. We can write the probability of infinitely often occurrence of A;, by the continuity and sub-additivity
of probability as
P(limsup A,) = liinP(U;@nAk) < li}gn Y P(Ag) =0.
n

k>n

The last equality follows from the fact that ), P(An) < 0. O
Proposition 6.2 (Borel zero-one law). Let A € FN be a sequence of independent events, then

0, ff L, P(A;) <oo,

P{Ayio} = {1/ T P(AL) —co.

Proof. Let A € N be a sequence of independent events.
(a) From Borel-Cantelli Lemma, if }_,, P(A;) < oo then P{A, i.0.} =0.
(b) Conversely, suppose ), P(Ay) = o, then Y-, P(Ax) = oo for all n € IN. From the definition of limsup
and liminf, continuity of probability, and independence of sequence of events A € FN, we get
m
P{A,io0}=1- P(limirr}fAZ) =1- lirrlnlinglP(ﬂf:nA,i) =1- lirrlnlinglkl—[(l — P(Ay)).
=n
Since 1 — x < e ™ for all x € R, from the above equation, the continuity of exponential function, and the
hypothesis, we get

1>P{A,i0}>1— 1i£nlinr1ne—25<”:np</*k> =1—limexp(— Y, P(Ay)) =1.

k>n



Example 6.3 (Convergence in probability can imply almost sure convergence). Consider a random
Bernoulli sequence X : Q) — {0,1}N defined on the probability space (Q), F, P) such that P {X,, = 1} = p,
for all n € IN. Note that the sequence of random variables is not assumed to be independent, and
definitely not identical. If lim, p, = 0, then we see that lim, X;,, = 0 in probability.

In addition, if }_,,c pn < oo, then lim, X,, = 0 a.s. To see this, we define event A, £ {Xn=1} €7
for each nn € IN. Then, applying the Borel-Cantelli Lemma to sequence of events A € TN, we get

1= P((limsup A,)°) = P(liminf A,).
n

n

That is, lim, X, = 0 for w € liminf, A, implying almost sure convergence.

Theorem 6.4. A random sequence X : QO — RN converges to a random variable X« : QO — R in probability, then
there exists a subsequence (ny : k € IN) C N such that (X, : k € IN) converges almost surely to Xe.

Proof. Letting 11 = 1, we define the following subsequence and event recursively for each j € IN,
m 2inf{N>m 11 P{|X = Xeo| >27} <27, forallr >N}, 42 {|Xy, = Xe| > 27},

From the construction, we have limy n; = o0, and P(4;) < 27 for each j € IN. Therefore, Y e P(Ax) < oo,
and hence by the Borel-Cantelli Lemma, we have P(limsup, Ay) = 0. Let N = limsup, A, be the exception
set such that for any outcome w ¢ N, for all but finitely many j € IN

X (W) = Xeo(w) [ <277,

That is, for all w ¢ N, we have lim,, X, (w) = Xoo(w). O

Theorem 6.5. A random sequence X : QO — RN converges to a random variable X« in probability iff each subse-
quence (Xp, : k € IN) contains a further subsequence (Xp, :j € IN) converges almost surely to Xeo.
]

A Limits of sequences
Definition A.1. For any real valued sequence a € RN, we can define

hmsup ay = 1nfsup ag, hmmfan = sup inf ai.
k=n k=n

Remark 4. We define ¢, = supk>n ar and f, = inf>, ar, and observe that f, < ai for all k > n. That is,
fi,- o fne1 < ap and fi < ay for all k > n. It follows that sup,, fn < SUpy, 4k = e for all n € N, and hence
lirnlnf,1 an =sup,, fy <inf, e, = limsup,, a,.

Definition A.2. A sequence a € RN is said to converge if limsup, a, = liminf, a, and the limit is defined
as a, = lim, a, = limsup,, a, = liminf, a,.

Theorem A.3. A sequence a € RN converges to as € R if for all € > 0 there exists an integer N € IN such that for
all n > N, we have |a, — de| < €.

Proof. Let € > 0 and find the integer N € IN such that a, € (4 — €,d00 + €) for all n > Ng. It follows that
oo — € < fy < ey <deo + € forall n > N, and hence ac — € < liminf, a, <limsup, 4, < 4« + €. Since € was
arbitrary, it follows that lim;, 4, = Aco. O



Proposition A.4. For any sequence a € RY, the following statements are true.
(D) If YpeN an < oo then limy—e0 Y gy a = 0.
(ii) If e an = 0o then Yy, ap = oo for all k € IN.

Proof. We observe that (} s, a; : n € IN) is a non-decreasing sequence, and hence lim, oo Y ., @ = SUp,, Y, 4k =
ZnE]N an.
(i) It follows that } 4, ar = Y e @n — Yg<n ak is @ non-increasing sequence with limit 0.
(ii) We can write ), cN @n = Y k<p @k + Li>n dk- Since the first term is finite for all n € IN, it follows that the
second term must be infinite for all n € IN.
O
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