
Lecture-14: Almost sure convergence

1 Point-wise convergence

Consider a random sequence X : Ω → RN defined on a probability space (Ω,F, P), then each Xn ≜ πn ◦ X :
Ω → R is a random variable. There are many possible definitions for convergence of a sequence of random
variables. One idea is to consider X(ω) ∈ RN as a real valued sequence for each outcome ω, and consider
the limn Xn(ω) for each outcome ω.

Definition 1.1. A random sequence X : Ω → RN defined on a probability space (Ω,F, P) converges point-
wise to a random variable X∞ : Ω → R, if for all outcomes ω ∈ Ω, we have

lim
n

Xn(ω) = X∞(ω).

Remark 1. This is a very strong convergence. Intuitively, what happens on an event of probability zero is
not important. We will strive for a weaker notion of convergence, where the sequence of random variable
converge point-wise on a set of outcomes with probability one.

2 Almost sure statements

Definition 2.1. A statement holds almost surely (a.s.) if there exists an event called the exception set N ∈ F

with P(N) = 0 such that the statement holds for all ω /∈ N.

Example 2.2 (Almost sure equality). Two random variables X,Y defined on the probability space
(Ω,F, P) are said to be equal a.s. if the following exception set

N ≜ {ω ∈ Ω : X(ω) ̸= Y(ω)} ∈ F,

has probability measure P(N) = 0. Then Y is called a version of X, and we can define an equivalence
class of a.s. equal random variables.

Example 2.3 (Almost sure monotonicity). Two random variables X,Y defined on the probability space
(Ω,F, P) are said to be X ⩽ Y a.s. if the exception set N ≜ {ω ∈ Ω : X(ω) > Y(ω)} ∈ F has probability
measure P(N) = 0.

3 Almost sure convergence

Definition 3.1 (Almost sure convergence). A random sequence X : Ω → RN defined on the probability
space (Ω,F, P) converges almost surely, if the following exception set

N ≜
{

ω ∈ Ω : liminf
n

Xn(ω) < limsup
n

Xn(ω) or limsup
n

Xn(ω) = ∞
}
∈ F,

has zero probability. Let X∞ be the point-wise limit of the sequence of random variables X : Ω → RN on
the set Nc, then we say that the sequence X converges almost surely to X∞, and denote it as

lim
n

Xn = X∞ a.s.
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Example 3.2 (Convergence almost surely but not everywhere). Consider the probability space
([0,1],B([0,1]),λ) such that λ([a,b]) = b − a for all 0 ⩽ a ⩽ b ⩽ 1. For each n ∈ N, we define the scaled
indicator random variable Xn : Ω → {0,1} such that

Xn(ω)≜ n1[0, 1
n ]
(ω).

Let N = {0}, then for any ω /∈ N, there exists m = ⌈ 1
ω ⌉ ∈ N, such that for all n > m, we have Xn(ω) = 0.

That is, limn Xn = 0 a.s. since λ(N) = 0. However, Xn(0) = n for all n ∈ N.

4 Convergence in probability

Definition 4.1 (convergence in probability). A random sequence X : Ω → RN defined on the probability
space (Ω,F, P) converges in probability to a random variable X∞ : Ω → R, if limn P(An(ϵ)) = 0 for any
ϵ > 0, where

An(ϵ)≜ {ω ∈ Ω : |Xn(ω)− X∞(ω)| > ϵ} ∈ F.

Remark 2. limn Xn = X∞ a.s. means that for almost all outcomes ω, the difference Xn(ω) − X∞(ω) gets
small and stays small.
Remark 3. limn Xn = X∞ i.p. is a weaker convergence than a.s. convergence, and merely requires that the
probability of the difference Xn(ω)− X∞(ω) being non-trivial becomes small.

Example 4.2 (Convergence in probability but not almost surely). Consider the probability space
([0,1],B([0,1]),λ) such that λ([a,b]) = b − a for all 0 ⩽ a ⩽ b ⩽ 1. For each k ∈ N, we consider the se-
quence Sk = ∑k

i=1 i, and define integer intervals Ik ≜ {Sk−1 + 1, . . . ,Sk}. Clearly, the intervals (Ik : k ∈ N)
partition the natural numbers, and each n ∈ N lies in some Ikn , such that n = Skn−1 + in for in ∈ [kn].
Therefore, for each n ∈ N, we define indicator random variable Xn : Ω → {0,1} such that

Xn(ω) = 1[ in−1
kn

, in
kn ]

(ω).

For any ω ∈ [0,1], we have Xn(ω) = 1 for infinitely many values since there exist infinitely many (i,k)
pairs such that (i−1)

k ⩽ ω ⩽ i
k , and hence limsupn Xn(ω) = 1 and hence limn Xn(ω) ̸= 0. However,

limn Xn(ω) = 0 in probability, since

lim
n

λ{Xn(ω) ̸= 0} = lim
n

1
kn

= 0.

5 Infinitely often and all but finitely many

Lemma 5.1 (infinitely often and all but finitely many). Let A ∈ FN be a sequence of events.

(a) For some subsequence (kn : n ∈ N) depending on ω, we have

limsup
n

An =
{

ω ∈ Ω : ω ∈ Akn for all n ∈ N
}
=

{
ω ∈ Ω : ∑

n∈N

1An(ω) = ∞

}
= {An infinitely often } .

(b) For a finite n0(ω) ∈ N depending on ω, we have

liminf
n

An = {ω ∈ Ω : ω ∈ An for all n ⩾ n0(ω)}=
{

ω ∈ Ω : ∑
n∈N

1Ac
n(ω) < ∞

}
= {An for all but finitely many n} .
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Proof. Let A ∈ FN be a sequence of events.

(a) Let ω ∈ limsupn An = ∩n∈N ∪k⩾n Ak, then ω ∈ ∪k⩾n Ak for all n ∈ N. Therefore, for each n ∈ N, there
exists kn ∈ N such that ω ∈ Akn , and hence

∑
j∈N

1Aj(ω)⩾ ∑
n∈N

1Akn
(ω) = ∞.

Conversely, if ∑j∈N1Aj(ω) = ∞, then for each n ∈ N there exists a kn ∈ N such that ω ∈ Akn and hence
ω ∈ ∪k⩾n Ak for all n ∈ N.

(b) Let ω ∈ liminfn An = ∪n∈N ∩k⩾n Ak, then there exists n0(ω) such that ω ∈ An for all n ⩾ n0(ω). Con-
versely, if ∑j∈N1Ac

j
(ω) < ∞, then there exists n0(ω) such that ω ∈ An for all n ⩾ n0(ω).

Theorem 5.2 (Convergence a.s. implies in probability). If a sequence of random variables X : Ω → RN defined
on a probability space (Ω,F, P) converges a.s. to a random variable X∞ : Ω → R, then it converges in probability to
the same random variable.

Proof. Let limn Xn = X∞ a.s. and ϵ > 0. We define events An ≜ {ω ∈ Ω : |Xn(ω)− X∞(ω)| > ϵ} for each
n ∈ N. We will show that limn P(An) = 0. To this end, let N be the exception set such that

N ≜
{

ω ∈ Ω : liminf
n

Xn(ω) < limsup
n

Xn(ω) or limsup
n

Xn(ω) = ∞
}

.

For ω /∈ N, there exists an n0(ω) such that |Xn − X∞| ⩽ ϵ for all n ⩾ n0. That is, ω ∈ Ac
n for all n ⩾ n0(ω)

and hence Nc ⊆ liminfn Ac
n. It follows that 1 = P(liminfn Ac

n). Since liminfn Ac
n = (limsupn An)c, we get

0 = P(limsupn An) = limn P(∪k⩾n Ak)⩾ limn P(An)⩾ 0.

6 Borel-Cantelli Lemma

Proposition 6.1 (Borel-Cantelli Lemma). Let A ∈ FN be a sequence of events such that ∑n∈N P(An)< ∞, then
P{An i.o.} = 0.

Proof. We can write the probability of infinitely often occurrence of An, by the continuity and sub-additivity
of probability as

P(limsup
n

An) = lim
n

P(∪k⩾n Ak)⩽ lim
n ∑

k⩾n
P(Ak) = 0.

The last equality follows from the fact that ∑n∈N P(An) < ∞.

Proposition 6.2 (Borel zero-one law). Let A ∈ FN be a sequence of independent events, then

P{An i.o.} =
{

0, iff ∑n P(An) < ∞,
1, iff ∑n P(An) = ∞.

Proof. Let A ∈ FN be a sequence of independent events.

(a) From Borel-Cantelli Lemma, if ∑n P(An) < ∞ then P{An i.o.} = 0.

(b) Conversely, suppose ∑n P(An) = ∞, then ∑k⩾n P(Ak) = ∞ for all n ∈ N. From the definition of limsup
and liminf, continuity of probability, and independence of sequence of events A ∈ FN, we get

P{An i.o.} = 1 − P(liminf
n

Ac
n) = 1 − lim

n
lim

m
P(∩m

k=n Ac
k) = 1 − lim

n
lim

m

m

∏
k=n

(1 − P(Ak)).

Since 1− x ⩽ e−x for all x ∈ R, from the above equation, the continuity of exponential function, and the
hypothesis, we get

1 ⩾ P{An i.o.}⩾ 1 − lim
n

lim
m

e−∑m
k=n P(Ak) = 1 − lim

n
exp(− ∑

k⩾n
P(Ak)) = 1.
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Example 6.3 (Convergence in probability can imply almost sure convergence). Consider a random
Bernoulli sequence X : Ω →{0,1}N defined on the probability space (Ω,F, P) such that P{Xn = 1}= pn
for all n ∈ N. Note that the sequence of random variables is not assumed to be independent, and
definitely not identical. If limn pn = 0, then we see that limn Xn = 0 in probability.

In addition, if ∑n∈N pn < ∞, then limn Xn = 0 a.s. To see this, we define event An ≜ {Xn = 1} ∈ F

for each n ∈ N. Then, applying the Borel-Cantelli Lemma to sequence of events A ∈ FN, we get

1 = P((limsup
n

An)
c) = P(liminf

n
Ac

n).

That is, limn Xn = 0 for ω ∈ liminfn Ac
n, implying almost sure convergence.

Theorem 6.4. A random sequence X : Ω → RN converges to a random variable X∞ : Ω → R in probability, then
there exists a subsequence (nk : k ∈ N) ⊂ N such that (Xnk : k ∈ N) converges almost surely to X∞.

Proof. Letting n1 = 1, we define the following subsequence and event recursively for each j ∈ N,

nj ≜ inf
{

N > nj−1 : P
{
|Xr − X∞| > 2−j

}
< 2−j, for all r ⩾ N

}
, Aj ≜

{∣∣∣Xnj+1 − X∞

∣∣∣ > 2−j
}

.

From the construction, we have limk nk = ∞, and P(Aj) < 2−j for each j ∈ N. Therefore, ∑k∈N P(Ak) < ∞,
and hence by the Borel-Cantelli Lemma, we have P(limsupk Ak) = 0. Let N = limsupk Ak be the exception
set such that for any outcome ω /∈ N, for all but finitely many j ∈ N∣∣∣Xnj(ω)− X∞(ω)

∣∣∣⩽ 2−j.

That is, for all ω /∈ N, we have limn Xn(ω) = X∞(ω).

Theorem 6.5. A random sequence X : Ω → RN converges to a random variable X∞ in probability iff each subse-
quence (Xnk : k ∈ N) contains a further subsequence (Xnkj

: j ∈ N) converges almost surely to X∞.

A Limits of sequences

Definition A.1. For any real valued sequence a ∈ RN, we can define

limsup
n

an ≜ inf
n

sup
k⩾n

ak, liminf
n

an ≜ sup
n

inf
k⩾n

ak.

Remark 4. We define en ≜ supk⩾n ak and fn ≜ infk⩾n ak, and observe that fn ⩽ ak for all k ⩾ n. That is,
f1, . . . , fn−1 ⩽ an and fk ⩽ ak for all k ⩾ n. It follows that supn fn ⩽ supk⩾n ak = en for all n ∈ N, and hence
liminfn an = supn fn ⩽ infn en = limsupn an.

Definition A.2. A sequence a ∈ RN is said to converge if limsupn an = liminfn an and the limit is defined
as an ≜ limn an = limsupn an = liminfn an.

Theorem A.3. A sequence a ∈ RN converges to a∞ ∈ R if for all ϵ > 0 there exists an integer N ∈ N such that for
all n ⩾ N, we have |an − a∞| < ϵ.

Proof. Let ϵ > 0 and find the integer Nϵ ∈ N such that an ∈ (a∞ − ϵ, a∞ + ϵ) for all n ⩾ Nϵ. It follows that
a∞ − ϵ ⩽ fn ⩽ en ⩽ a∞ + ϵ for all n ⩾ Nϵ, and hence a∞ − ϵ ⩽ liminfn an ⩽ limsupn an ⩽ a∞ + ϵ. Since ϵ was
arbitrary, it follows that limn an = a∞.
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Proposition A.4. For any sequence a ∈ RN
+ , the following statements are true.

(i) If ∑n∈N an < ∞ then limn→∞ ∑k⩾n ak = 0.
(ii) If ∑n∈N an = ∞ then ∑k⩾n ak = ∞ for all k ∈ N.

Proof. We observe that (∑k<n ak : n∈N) is a non-decreasing sequence, and hence limn→∞ ∑k<n ak = supn ∑k<n ak =
∑n∈N an.

(i) It follows that ∑k⩾n ak = ∑n∈N an − ∑k<n ak is a non-increasing sequence with limit 0.
(ii) We can write ∑n∈N an = ∑k<n ak + ∑k⩾n ak. Since the first term is finite for all n ∈ N, it follows that the

second term must be infinite for all n ∈ N.
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