Lecture-14: Almost sure convergence

1 Point-wise convergence

Consider a random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined on a probability space (Ω, \mathcal{F}, P) , then each $X_n \triangleq \pi_n \circ X : \Omega \to \mathbb{R}$ is a random variable. There are many possible definitions for convergence of a sequence of random variables. One idea is to consider $X(\omega) \in \mathbb{R}^{\mathbb{N}}$ as a real valued sequence for each outcome ω , and consider the $\lim_n X_n(\omega)$ for each outcome ω .

Definition 1.1. A random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined on a probability space (Ω, \mathcal{F}, P) **converges pointwise** to a random variable $X_{\infty} : \Omega \to \mathbb{R}$, if for all outcomes $\omega \in \Omega$, we have

$$\lim X_n(\omega) = X_\infty(\omega).$$

Remark 1. This is a very strong convergence. Intuitively, what happens on an event of probability zero is not important. We will strive for a weaker notion of convergence, where the sequence of random variable converge point-wise on a set of outcomes with probability one.

2 Almost sure statements

Definition 2.1. A statement holds **almost surely** (a.s.) if there exists an event called the **exception set** $N \in \mathcal{F}$ with P(N) = 0 such that the statement holds for all $\omega \notin N$.

Example 2.2 (Almost sure equality). Two random variables *X*, *Y* defined on the probability space (Ω, \mathcal{F}, P) are said to be equal a.s. if the following exception set

$$N \triangleq \{\omega \in \Omega : X(\omega) \neq Y(\omega)\} \in \mathcal{F},$$

has probability measure P(N) = 0. Then *Y* is called a **version** of *X*, and we can define an equivalence class of a.s. equal random variables.

Example 2.3 (Almost sure monotonicity). Two random variables *X*, *Y* defined on the probability space (Ω, \mathcal{F}, P) are said to be $X \leq Y$ a.s. if the exception set $N \triangleq \{\omega \in \Omega : X(\omega) > Y(\omega)\} \in \mathcal{F}$ has probability measure P(N) = 0.

3 Almost sure convergence

Definition 3.1 (Almost sure convergence). A random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined on the probability space (Ω, \mathcal{F}, P) converges almost surely, if the following exception set

$$N \triangleq \left\{ \omega \in \Omega : \liminf_{n} X_{n}(\omega) < \limsup_{n} X_{n}(\omega) \text{ or } \limsup_{n} X_{n}(\omega) = \infty \right\} \in \mathcal{F},$$

has zero probability. Let X_{∞} be the point-wise limit of the sequence of random variables $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ on the set N^c , then we say that the sequence X converges almost surely to X_{∞} , and denote it as

$$\lim_{n} X_n = X_{\infty} \text{ a.s}$$

Example 3.2 (Convergence almost surely but not everywhere). Consider the probability space $([0,1], \mathcal{B}([0,1]), \lambda)$ such that $\lambda([a,b]) = b - a$ for all $0 \le a \le b \le 1$. For each $n \in \mathbb{N}$, we define the scaled indicator random variable $X_n : \Omega \to \{0,1\}$ such that

$$X_n(\omega) \triangleq n \mathbb{1}_{\left[0,\frac{1}{n}\right]}(\omega).$$

Let $N = \{0\}$, then for any $\omega \notin N$, there exists $m = \lfloor \frac{1}{\omega} \rfloor \in \mathbb{N}$, such that for all n > m, we have $X_n(\omega) = 0$. That is, $\lim_n X_n = 0$ a.s. since $\lambda(N) = 0$. However, $X_n(0) = n$ for all $n \in \mathbb{N}$.

4 Convergence in probability

Definition 4.1 (convergence in probability). A random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined on the probability space (Ω, \mathcal{F}, P) converges in probability to a random variable $X_{\infty} : \Omega \to \mathbb{R}$, if $\lim_{n \to \infty} P(A_n(\epsilon)) = 0$ for any $\epsilon > 0$, where

$$A_n(\epsilon) \triangleq \{\omega \in \Omega : |X_n(\omega) - X_\infty(\omega)| > \epsilon\} \in \mathcal{F}.$$

Remark 2. $\lim_{n} X_n = X_{\infty}$ a.s. means that for almost all outcomes ω , the difference $X_n(\omega) - X_{\infty}(\omega)$ gets small and stays small.

Remark 3. $\lim_{n} X_n = X_{\infty}$ i.p. is a weaker convergence than a.s. convergence, and merely requires that the probability of the difference $X_n(\omega) - X_{\infty}(\omega)$ being non-trivial becomes small.

Example 4.2 (Convergence in probability but not almost surely). Consider the probability space $([0,1], \mathcal{B}([0,1]), \lambda)$ such that $\lambda([a,b]) = b - a$ for all $0 \le a \le b \le 1$. For each $k \in \mathbb{N}$, we consider the sequence $S_k = \sum_{i=1}^k i$, and define integer intervals $I_k \triangleq \{S_{k-1} + 1, \dots, S_k\}$. Clearly, the intervals $(I_k : k \in \mathbb{N})$ partition the natural numbers, and each $n \in \mathbb{N}$ lies in some I_{k_n} , such that $n = S_{k_n-1} + i_n$ for $i_n \in [k_n]$. Therefore, for each $n \in \mathbb{N}$, we define indicator random variable $X_n : \Omega \to \{0,1\}$ such that

$$X_n(\omega) = \mathbb{1}_{\left[\frac{i_n-1}{k_n}, \frac{i_n}{k_n}\right]}(\omega).$$

For any $\omega \in [0,1]$, we have $X_n(\omega) = 1$ for infinitely many values since there exist infinitely many (i,k) pairs such that $\frac{(i-1)}{k} \leq \omega \leq \frac{i}{k}$, and hence $\limsup_n X_n(\omega) = 1$ and hence $\lim_n X_n(\omega) \neq 0$. However, $\lim_n X_n(\omega) = 0$ in probability, since

$$\lim_{n} \lambda \left\{ X_n(\omega) \neq 0 \right\} = \lim_{n} \frac{1}{k_n} = 0$$

5 Infinitely often and all but finitely many

Lemma 5.1 (infinitely often and all but finitely many). *Let* $A \in \mathcal{F}^{\mathbb{N}}$ *be a sequence of events.*

(a) For some subsequence $(k_n : n \in \mathbb{N})$ depending on ω , we have

$$\limsup_{n} A_{n} = \left\{ \omega \in \Omega : \omega \in A_{k_{n}} \text{ for all } n \in \mathbb{N} \right\} = \left\{ \omega \in \Omega : \sum_{n \in \mathbb{N}} \mathbb{1}_{A_{n}}(\omega) = \infty \right\} = \left\{ A_{n} \text{ infinitely often } \right\}.$$

(b) For a finite $n_0(\omega) \in \mathbb{N}$ depending on ω , we have

$$\liminf_{n} A_{n} = \{\omega \in \Omega : \omega \in A_{n} \text{ for all } n \ge n_{0}(\omega)\} = \left\{\omega \in \Omega : \sum_{n \in \mathbb{N}} \mathbb{1}_{A_{n}^{c}}(\omega) < \infty\right\} = \{A_{n} \text{ for all but finitely many } n\}$$

Proof. Let $A \in \mathcal{F}^{\mathbb{N}}$ be a sequence of events.

(a) Let $\omega \in \limsup_n A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k$, then $\omega \in \bigcup_{k \ge n} A_k$ for all $n \in \mathbb{N}$. Therefore, for each $n \in \mathbb{N}$, there exists $k_n \in \mathbb{N}$ such that $\omega \in A_{k_n}$, and hence

$$\sum_{j\in\mathbb{N}}\mathbb{1}_{A_j}(\omega) \geqslant \sum_{n\in\mathbb{N}}\mathbb{1}_{A_{k_n}}(\omega) = \infty.$$

Conversely, if $\sum_{j \in \mathbb{N}} \mathbb{1}_{A_j}(\omega) = \infty$, then for each $n \in \mathbb{N}$ there exists a $k_n \in \mathbb{N}$ such that $\omega \in A_{k_n}$ and hence $\omega \in \bigcup_{k \ge n} A_k$ for all $n \in \mathbb{N}$.

(b) Let $\omega \in \liminf_{n \in \mathbb{N}} n_{k \geq n} A_k$, then there exists $n_0(\omega)$ such that $\omega \in A_n$ for all $n \geq n_0(\omega)$. Conversely, if $\sum_{j \in \mathbb{N}} \mathbb{1}_{A_i^c}(\omega) < \infty$, then there exists $n_0(\omega)$ such that $\omega \in A_n$ for all $n \geq n_0(\omega)$.

Theorem 5.2 (Convergence a.s. implies in probability). *If a sequence of random variables* $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ *defined on a probability space* (Ω, \mathcal{F}, P) *converges a.s. to a random variable* $X_{\infty} : \Omega \to \mathbb{R}$ *, then it converges in probability to the same random variable.*

Proof. Let $\lim_n X_n = X_\infty$ a.s. and $\epsilon > 0$. We define events $A_n \triangleq \{\omega \in \Omega : |X_n(\omega) - X_\infty(\omega)| > \epsilon\}$ for each $n \in \mathbb{N}$. We will show that $\lim_n P(A_n) = 0$. To this end, let N be the exception set such that

$$N \triangleq \left\{ \omega \in \Omega : \liminf_{n} X_{n}(\omega) < \limsup_{n} X_{n}(\omega) \text{ or } \limsup_{n} X_{n}(\omega) = \infty \right\}.$$

For $\omega \notin N$, there exists an $n_0(\omega)$ such that $|X_n - X_\infty| \leq \epsilon$ for all $n \geq n_0$. That is, $\omega \in A_n^c$ for all $n \geq n_0(\omega)$ and hence $N^c \subseteq \liminf_n A_n^c$. It follows that $1 = P(\liminf_n A_n^c)$. Since $\liminf_n A_n^c = (\limsup_n A_n)^c$, we get $0 = P(\limsup_n A_n) = \lim_n P(\bigcup_{k \geq n} A_k) \geq \lim_n P(A_n) \geq 0$.

6 Borel-Cantelli Lemma

Proposition 6.1 (Borel-Cantelli Lemma). Let $A \in \mathcal{F}^{\mathbb{N}}$ be a sequence of events such that $\sum_{n \in \mathbb{N}} P(A_n) < \infty$, then $P\{A_n \text{ i.o.}\} = 0$.

Proof. We can write the probability of infinitely often occurrence of A_n , by the continuity and sub-additivity of probability as

$$P(\limsup_{n} A_{n}) = \lim_{n} P(\bigcup_{k \ge n} A_{k}) \le \lim_{n} \sum_{k \ge n} P(A_{k}) = 0.$$

The last equality follows from the fact that $\sum_{n \in \mathbb{N}} P(A_n) < \infty$.

Proposition 6.2 (Borel zero-one law). *Let* $A \in \mathbb{F}^{\mathbb{N}}$ *be a sequence of independent events, then*

$$P\{A_n \text{ i.o.}\} = \begin{cases} 0, & \text{iff } \sum_n P(A_n) < \infty, \\ 1, & \text{iff } \sum_n P(A_n) = \infty. \end{cases}$$

Proof. Let $A \in \mathcal{F}^{\mathbb{N}}$ be a sequence of independent events.

(a) From Borel-Cantelli Lemma, if $\sum_{n} P(A_n) < \infty$ then $P\{A_n \text{ i.o.}\} = 0$.

(b) Conversely, suppose $\sum_{n} P(A_n) = \infty$, then $\sum_{k \ge n} P(A_k) = \infty$ for all $n \in \mathbb{N}$. From the definition of lim sup and lim inf, continuity of probability, and independence of sequence of events $A \in \mathcal{F}^{\mathbb{N}}$, we get

$$P\{A_n \text{ i.o.}\} = 1 - P(\liminf_n A_n^c) = 1 - \lim_n \lim_m P(\bigcap_{k=n}^m A_k^c) = 1 - \lim_n \lim_m \prod_{k=n}^m (1 - P(A_k)).$$

Since $1 - x \le e^{-x}$ for all $x \in \mathbb{R}$, from the above equation, the continuity of exponential function, and the hypothesis, we get

$$1 \ge P\{A_n \text{ i.o.}\} \ge 1 - \lim_{n} \lim_{m} e^{-\sum_{k=n}^{m} P(A_k)} = 1 - \lim_{n} \exp(-\sum_{k \ge n} P(A_k)) = 1.$$

Example 6.3 (Convergence in probability can imply almost sure convergence). Consider a random Bernoulli sequence $X : \Omega \to \{0,1\}^{\mathbb{N}}$ defined on the probability space (Ω, \mathcal{F}, P) such that $P\{X_n = 1\} = p_n$ for all $n \in \mathbb{N}$. Note that the sequence of random variables is not assumed to be independent, and definitely not identical. If $\lim_{n \to \infty} p_n = 0$, then we see that $\lim_{n \to \infty} X_n = 0$ in probability.

In addition, if $\sum_{n \in \mathbb{N}} p_n < \infty$, then $\lim_n X_n = 0$ a.s. To see this, we define event $A_n \triangleq \{X_n = 1\} \in \mathcal{F}$ for each $n \in \mathbb{N}$. Then, applying the Borel-Cantelli Lemma to sequence of events $A \in \mathcal{F}^{\mathbb{N}}$, we get

$$1 = P((\limsup_{n} A_n)^c) = P(\liminf_{n} A_n^c).$$

That is, $\lim_{n \to \infty} X_n = 0$ for $\omega \in \liminf_{n \to \infty} A_n^c$, implying almost sure convergence.

Theorem 6.4. A random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ converges to a random variable $X_{\infty} : \Omega \to \mathbb{R}$ in probability, then there exists a subsequence $(n_k : k \in \mathbb{N}) \subset \mathbb{N}$ such that $(X_{n_k} : k \in \mathbb{N})$ converges almost surely to X_{∞} .

Proof. Letting $n_1 = 1$, we define the following subsequence and event recursively for each $j \in \mathbb{N}$,

$$n_j \triangleq \inf \left\{ N > n_{j-1} : P\left\{ |X_r - X_{\infty}| > 2^{-j} \right\} < 2^{-j}, \text{ for all } r \ge N \right\}, \qquad A_j \triangleq \left\{ \left| X_{n_{j+1}} - X_{\infty} \right| > 2^{-j} \right\}.$$

From the construction, we have $\lim_k n_k = \infty$, and $P(A_j) < 2^{-j}$ for each $j \in \mathbb{N}$. Therefore, $\sum_{k \in \mathbb{N}} P(A_k) < \infty$, and hence by the Borel-Cantelli Lemma, we have $P(\limsup_k A_k) = 0$. Let $N = \limsup_k A_k$ be the exception set such that for any outcome $\omega \notin N$, for all but finitely many $j \in \mathbb{N}$

$$\left|X_{n_j}(\omega)-X_{\infty}(\omega)\right|\leqslant 2^{-j}$$

That is, for all $\omega \notin N$, we have $\lim_{n \to \infty} X_n(\omega) = X_{\infty}(\omega)$.

Theorem 6.5. A random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ converges to a random variable X_{∞} in probability iff each subsequence $(X_{n_k} : k \in \mathbb{N})$ contains a further subsequence $(X_{n_{k_i}} : j \in \mathbb{N})$ converges almost surely to X_{∞} .

A Limits of sequences

Definition A.1. For any real valued sequence $a \in \mathbb{R}^{\mathbb{N}}$, we can define

$$\limsup_{n} a_{n} \triangleq \inf_{n} \sup_{k \ge n} a_{k}, \qquad \qquad \liminf_{n} a_{n} \triangleq \sup_{n} \inf_{k \ge n} a_{k}$$

Remark 4. We define $e_n \triangleq \sup_{k \ge n} a_k$ and $f_n \triangleq \inf_{k \ge n} a_k$, and observe that $f_n \le a_k$ for all $k \ge n$. That is, $f_1, \ldots, f_{n-1} \le a_n$ and $f_k \le a_k$ for all $k \ge n$. It follows that $\sup_n f_n \le \sup_{k \ge n} a_k = e_n$ for all $n \in \mathbb{N}$, and hence $\liminf_n a_n = \sup_n f_n \le \inf_n e_n = \limsup_n a_n$.

Definition A.2. A sequence $a \in \mathbb{R}^{\mathbb{N}}$ is said to converge if $\limsup_n a_n = \liminf_n a_n$ and the limit is defined as $a_n \triangleq \lim_n a_n = \limsup_n a_n = \liminf_n a_n$.

Theorem A.3. A sequence $a \in \mathbb{R}^{\mathbb{N}}$ converges to $a_{\infty} \in \mathbb{R}$ if for all $\epsilon > 0$ there exists an integer $N \in \mathbb{N}$ such that for all $n \ge N$, we have $|a_n - a_{\infty}| < \epsilon$.

Proof. Let $\epsilon > 0$ and find the integer $N_{\epsilon} \in \mathbb{N}$ such that $a_n \in (a_{\infty} - \epsilon, a_{\infty} + \epsilon)$ for all $n \ge N_{\epsilon}$. It follows that $a_{\infty} - \epsilon \le f_n \le e_n \le a_{\infty} + \epsilon$ for all $n \ge N_{\epsilon}$, and hence $a_{\infty} - \epsilon \le \liminf_n a_n \le \lim_n a_n \le a_{\infty} + \epsilon$. Since ϵ was arbitrary, it follows that $\lim_n a_n = a_{\infty}$.

Proposition A.4. For any sequence $a \in \mathbb{R}_+^{\mathbb{N}}$, the following statements are true. (i) If $\sum_{n \in \mathbb{N}} a_n < \infty$ then $\lim_{n \to \infty} \sum_{k \ge n} a_k = 0$. (ii) If $\sum_{n \in \mathbb{N}} a_n = \infty$ then $\sum_{k \ge n} a_k = \infty$ for all $k \in \mathbb{N}$.

Proof. We observe that $(\sum_{k < n} a_k : n \in \mathbb{N})$ is a non-decreasing sequence, and hence $\lim_{n \to \infty} \sum_{k < n} a_k = \sup_n \sum_{k < n} a_k = \sup_n \sum_{k < n} a_k$ $\sum_{n\in\mathbb{N}}a_n$.

- (i) It follows that ∑_{k≥n} a_k = ∑_{n∈ℕ} a_n − ∑_{k<n} a_k is a non-increasing sequence with limit 0.
 (ii) We can write ∑_{n∈ℕ} a_n = ∑_{k<n} a_k + ∑_{k≥n} a_k. Since the first term is finite for all n ∈ ℕ, it follows that the second term must be infinite for all n ∈ ℕ.