Lecture-15: L? convergence

1 LP convergence

Definition 1.1 (Convergence in L7). Let p > 1, then we say that a random sequence X : Q — RN defined
on a probability space (2, F,P) converges in L? to a random variable Xo : Q) — R, if

lim || X, — X[, = 0.

The convergence in L7 is denoted by lim;, X, = X in L.

Remark 1. For p € [1,00), the convergence of a random sequence X : QO — RN in L? to a random variable
Xoo 1 Q3 = R is equivalent to
ImE |X, — Xe|” =0.
n

Proposition 1.2 (Convergences L7 implies in probability). Consider p € [1,00) and a sequence of random
variables X : QO — RN defined on a probability space (Q,F, P) such that lim, X, = Xeo in LP, then lim, X, = Xeo
in probability.

Proof. Let € > 0, then from the Markov’s inequality applied to random variable |X,, — X|”, we have

E | X, — Xeo|

P{|Xy — Xeo| > €} < .

Example 1.3 (Convergence almost surely doesn’t imply convergence in L”). Consider the probability
space ([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. We define the scaled indicator
random variable X, : Q — {0,1} such that

Xn(w) = 2”]1[0 1] (w)

‘n

We define N = {0}, and for any w ¢ N, we can find m = [ 1], such that for all n > m, we have X, (w) =0.
Since A(N) =0, it implies that lim,, X,, = 0 a.s. However, we see that E | X, |/ = %

Remark 2. Convergence almost surely implies convergence in probability. Therefore, above example also
serves as a counterexample to the fact that convergence in probability doesn’t imply convergence in L?.

Theorem 1.4 (L? weak law of large numbers). Consider a sequence of uncorrelated random variables X : Q) —
RN defined on a probability space (Q),F, P) such that EX,, = y and Var(X,,) = o2 for all n € N. Defining the sum
S, = i1 X; and the n-empirical mean X, 2 57”, we have lim, X,, = p in L2 and in probability.

Proof. From the uncorrelatedness of random sequence X, and linearity of expectation, we get

. . , 1 , 02
Var(X,) =E(X, —u)* = EJE(SH —np) = o

It follows that lim,, X, = u in L%. Since the convergence in L? implies convergence in probability, the result
holds. O



Theorem 1.5 (L! weak law of large numbers). Consider an i.i.d. random sequence X : QO — RN defined on a
probability space (Q),F, P) such that E | X;| < co and EXq = . Defining the sum S, = Y_!' | X; and the n-empirical
mean X, £ %, we have lim,, X,, = p in probability.

Example 1.6 (Convergence in LP doesn’t imply almost surely). Consider the probability space
([0,1],B([0,1]),A) such that A([a,b]) =b —a for all 0 < a < b < 1. For each k € IN, we consider the se-
quence Sy = Zi-(:l i, and define integer intervals I, = {Sy_; +1,...,S;}. Clearly, the intervals (I; : k € N)
partition the natural numbers, and each n € N lies in some I, , such that n = Sy, 1 + i, for i, € [ky].
Therefore, for each n € IN, we define indicator random variable X, : Q — {0,1} such that

For any w € [0,1], we have X, (w) =1 for infinitely many values since there exist infinitely many (i,k)

pairs such that (izl) <w< %, and hence limsup, X, (w) = 1 and hence lim,, X, (w) # 0. However,
lim,, X, (w) = 01in L?, since
1
E|X,|P = A {X,(w) #0} = o
n

2 L! convergence theorems

Theorem 2.1 (Monotone Convergence Theorem). Consider a non-decreasing non-negative random sequence
X : QO — RY defined on a probability space (Q,F, P), such that X, € L! for all n € N. Let Xeo(w) = sup,, Xy(w)
forall w € Q, then EXe = sup, EX,.

Proof. From the monotonicity of sequence X and the monotonicity of expectation, we have sup, EX}, <
EXe. Leta € (0,1) and Y : Q3 — R a non-negative simple random variable such that Y < Xo. We define

E, 2 {weQ: Xy(w)=aY}eT.

From the monotonicity of sequence X, the sequence of events E € FN are monotonically non-decreasing
such that U,enE; = Q. Tt follows that

D(]E[Yﬂgn] < ]E[Xn]lgn] < ]EXn.

We will use the fact that lim, E[Y1g,| = E[Y], then a[EY < sup, EX,,. Taking supremum over all « € (0,1)
and all simple functions ¥ < Xe, we get EXo < sup, EX,. O

Theorem 2.2 (Fatou’s Lemma). Consider a non-negative random sequence X : Q0 — R defined on a probability
space (Q,F,P). Let Xoo(w) = liminf, X, (w) for all w € Q, then EXe < liminf, EX,,.

Proof. We define Y, £ infy~, X for all n € N. It follows that Y : O — RY is a non-negative non-decreasing
sequence of random variables, and X« = sup,, ¥, = lim,, Y;;. Applying monotone convergence theorem to

random sequence Y, we get EX« = sup,, IEY},. The result follows from the monotonicity of expectation, and
the fact that Y, < X for all k > n, to get EY), < infy~, EX. O

Theorem 2.3 (Dominated Convergence Theorem). Let X : QO — RN be a random sequence defined on a proba-
bility space (0, F, P). Iflim, X, = X a.s. and there exists a Y : Q3 — Ry such that Y € LY and |X,| <Y as., then
EXo = lim, EX,,.

Proof. From the hypothesis, we have Y + X, > 0 a.s. and Y — X,; > 0 a.s. Therefore, from Fatou’s Lemma
and linearity of expectation, we have

EY + EX, < lirr7111nf]E(Y +X,)=EY + lin}11nf]EXn, EY —EXy < lin}1inf]E(Y — X,) =EY — limsupEX,,.
n

Therefore, we have limsup, EX;, < EXy < liminf, EX};, and the result follows. O



3 Convergence theorems for conditional means

Proposition 3.1. Let X : O — RN be a random sequence on the probability space (Q,F, P) such that E|X,| < o
foralln € N. Let G and H be event spaces such that G,3{ C JF. Then the following theorems hold.

1. Conditional monotone convergence theorem: If 0 < X, < X119 a.s., for alln € N and X;;, — Xoo a.s. for
Xeo € L1, then E[X, | §] T E[Xw | §] a.s.

2. Conditional Fatou’s lemma: If X,, > 0 a.s., for all n € N, and liminf, X, € LY, then E[liminf, X, | §] <
liminf, E[X, | §] a.s.

3. Conditional dominated convergence theorem: If | X,,| < Z for alln € N and some Z € L', and if X, — Xoo,
a.s., then E[X, | §] = E[Xe | §] a.s. and in L.

Proof. Let X : O — RN be a random sequence on the probability space (Q,F, P) such that X,, € L! for all
n € N.

1. Conditional monotone-convergence theorem: By monotonicity, we have E[X, | §] T Y a.s. where
Y : ) — Ry is § measurable. The monotone convergence theorem implies that, for each G € G,

E[Y1g] = limE[1GE[X; | §]] = imE[1¢X,] = E[l¢Xe)-

2. Conditional Fatou’s lemma: Defining Y, = infy, Xk, we get Y;; T Yoo = liminf Xj. By monotonicity,

E[Y, | 9] < zgﬁ]E[Xk | 9] as..

The conditional monotone-convergence theorem implies that

EYe |G = li%E[Yn | §] <liminfE[X, | §] as..
ne n

3. Conditional dominated-convergence theorem: By the conditional Fatou’s lemma, we have

E[Z + Xo | §] <EminfE[Z + X, | Sl as.,  E[Z— Xu | §] <HminfE[Z — X, | §] as.,
n n

and the a.s.-statement follows.

4 Uniform integrability

Definition 4.1 (uniform integrability). A family (X; € L! : t € T) of random variables indexed by T is
uniformly integrable if
Jim, sup E[|Xi] Ljx; )] = 0.
€

Example 4.2 (Single element family). If |T| = 1, then the family is uniformly integrable, since X; € L!
and lim, E[|X1| 1x,|>43] = 0. This is due to the fact that (Xy 2 X| 1{x|<n} : 1 € N) is a sequence of
increasing random variables lim, X;,, = X. From monotone convergence theorem, we get lim,, E | X,,| =

Elimy, |X;|. Therefore,

HmE[|X| 1jx(>qy] = E|X| = BmE[|X]| 1(jx/<q)] = 0.



Proposition 4.3. Let X € LP and (A, :n € N) C F be a sequence of events such that lim, P(A,) = 0, then

lim X[ 14, = 0.

Example 4.4 (Dominated family). If there exists Y € L! such that sup,_1 | X;| < |Y/|, then the family of
random variables (X; : t € T) is uniformly integrable. This is due to the fact that

StuIT>]E[|X| Lyxi>ap] SE[Y|1{y|>al-
&

Example 4.5 (Finite family). then the family of random variables (X; : t € T) is uniformly integrable.
This is due to the fact that sup, ;| X¢| < Ly | Xi| € L1

Theorem 4.6 (Convergence in probability with uniform integrability implies convergence in L?). Con-
sider a sequence of random variables (X, : n € N) C LP for p > 1. Then the following are equivalent.

(a) The sequence (X, : n € N) converges in L?, i.e. lim, E |X, — X|V = 0.

(b) The sequence (X, : n € N) is Cauchy in LP, i.e. limy; n—00 E | Xy — Xiu|P = 0.

(c) lim, X, = X in probability and the sequence (|X,|" : n € N) is uniformly integrable.

Proof. For a random sequence (X, : n € IN) in L?, we will show that (a) = (b) = (¢) = (a).

(a) = (b) : We assume the sequence (X, : n € IN) converges in L”. Then, from Minkowski’s inequality,
we can write

1 1 1
(I [ Xy = Xou[") 7 < (B [Xy = X|P)7 4 (B [ Xy — X|P)7.

(b) = (c): We assume that the sequence (X, : n € N) is Cauchy in L7, i.e. limy ;0 E|X; — Xp|F = 0.
Let € > 0, then for each n € IN, there exists N, such that for all n,m > N,

E|X, — Xul <

N ™

Let A; = {w € A:|X;| > a}. Then, using triangle inequality and the fact that 1,4, <1, from the linearity
and monotonicity of expectation, we can write for n > Ne

I

(BLXulP 1, om])7 < (B[ Xn " 14,1)7 + (B[ X0 — Xn, ['])7 < (B[ X [P 1a,])7 +

N ™

Therefore, we can write sup, E[|Xu|" 1{x,>a}] < sup,,<n. E[|Xm|"14,] + §. Since (|Xy|" : n < Ne) is
finite family of random variables in L!, it is uniformly integrable. Therefore, there exists a. € R such

1 1
that sup,, . (B[|Xi|"14,])7 < §. Taking a’ = max{a,ac}, we get sup, (E[|X,|" 1{x,>a}])? <e. Since
the choice of € was arbitrary, it follows that

==

i P —
}gl;osgp(]E[anl 1x,>an])? =0.
The convergence in probability follows from the Markov inequality, i.e.

1
P{|Xn — X" > €} < E[Xy — Xu|"".



(c) = (a): Since the sequence (X, : n € N) is convergent in probability to a random variable X, there
exists a subsequence (1 : k € N) C IN such that lim; X,,, = X a.s. Since (|X,|” : n € N) is a family of
uniformly integrable sequence, by Fatou’s Lemma

E|X|? <liminfE | X, |" < sup E | X, | < co.
n

Therefore, X € L!, and we define A, (e) = {| X, — X| > €} for any € > 0. From Minkowski’s inequality,
we get

1% = X1, < | (X = X115, _xrecy

‘p + HXVl]lAn(E) ) HX]lAn(e)

p

We can check that H (Xn = X)L g o)

< e. Further, since lim,, X,, = X in probability, (A, :n € N) C F
P

=0.

= lim,,

is decreasing sequence of events, and since X,;, X € L', we have lim,, || X,, 1 An(e) X1 a,e)

O
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