Lecture-16: Weak convergence

1 Convergence in distribution

Definition 1.1 (convergence in distribution). A random sequence X : QO — RN defined on a probability
space (), F, P) converges in distribution to a random variable X : O’ — R defined on a probability space
(QY,5,P") if lim, Fx, (x) = Fx_, (x) at all continuity points x of Fx, . Convergence in distribution is denoted
by lim,, X;; = X« in distribution.

Proposition 1.2. Consider a random sequenceX : Q0 — RN defined on a probability space (Q0,F,P) and a random
variable X« : Q) — R defined on another probability space (OO, F', P"). Then the following statements are equivalent.

(a) lim, X,, = X« in distribution.
(b) lim, E[g(Xy)] = E[g(Xe)] for any bounded continuous Borel measurable function g : R — R.
(c) Characteristic functions converge point-wise, i.e. lim, ®x, (1) = Px_ (u) for each u € R.

Proof. Let X : O — RN be a sequence of random variables and let X : O’ — R be a random variable. We
will show that (a) = (b) = (c) = (a).

(a) = (b): Applying the bounded convergence theorem to any bounded continuous Borel measurable
function ¢ : R — R, we have lim,, [, _p ¢(x)dFx, (x) = [ g §(x)lim,dFx, (x).

(b)) = (c): Taking g(x) = /**, we get the result.

(c) = (a): The proof of this part is technical and is omitted.

Example 1.3 (Convergence in distribution but not in probability). Consider a sequence of non-degenerate
continuous i.i.d. random variables X : O — RN and independent random variable Y : Q' — R, all with the
common distribution Fy. Then Fx, = Fy for all n € N, and hence lim;, X;, = Y in distribution. If the common
distribution Fy is zero mean Gaussian with variance ¢2, then X,, — Y is zero mean Gaussian with variance
202, Therefore, for € < v/ and all n € N
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It follows that P{|X,, — Y| > €} >1— Uf/E for all n € IN, and hence lim X, # Y in probability.

P{|X, — Y| <e} =

Lemma 1.4 (Convergence in probability implies in distribution). Consider a sequence X : QO — RN of random
variables and a random variable X« : Q3 — R defined on a probability space (Q0,F, P), such that lim, X, = Xeo in
probability, then lim, X,, = X in distribution.

Proof. We will show that all continuity points x of Fx_, we have lim,_, Fx, (x) = Fx,(x). Fix € > 0. Since
x is a continuity point of non-decreasing function Fx_, choose 6 > 0 such that Fx_(x + ) — Fx_(x —J) <e.
Therefore, it suffices to show that

Fx.(x —6) <lim igf Fx,(x) < lim sup Fx, (x) < Fx_ (x +6).
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For the chosen & > 0, we consider the event A, (8) £ {w € Q1 | Xy (w) — Xeo(w)| > 6} = {Xy & [Xoo — 6, Xoo + 6]} €
F, and define events Ay, (x) £ {X, < x} and Ax_(x) £ {Xe < x}. Then, we can write

Ax, (x) N Ax, (x+06) C Ax (x+9), Ax, (x) N A _(x+96) € An(9),
Ax, (x —0)NAx,(x) C Ax, (x), Ax,(x —0) N A% (x) € An(9).
From the above set relations, law of total probability, and union bound, we have
Fx.(x —8) — P(An(6)) < Fx, (x) < Fx,(x+8) + P(An(9)).
From the convergence in probability, we have lim, P(A,(d)) = 0, and the result follows. O

Theorem 1.5 (Central Limit Theorem). Consider an i.i.d. random sequence X : QO — RN defined on a probability
space (Q,F,P), with EX,, = p and Var(X,) = o for all n € N. We define the n-sum as S, = Y.I'_; X; and consider

2
a standard normal random variable Y : Q) — R with density function fy(y) = BES forally € R. Then,
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Proof. The classical proof is using the characteristic functions. Let Z; £ @ for all i € IN, then the shifted
Sp—np _ 1 vn

oy = i li=1
that the characteristic function of converges to the characteristic function of the standard normal. We define
the characteristic functions

=Y in distribution.

and scaled n-sum is given by

Z;. We use the third equivalence in Proposition 1.2 to show

S —
&, (u) = Eexp (]u("ny)> , @y (u) = Eexp(juz;), ®y(u) 2 Eexp(juY).
o\/n
We can compute the characteristic function of the standard normal as

.2 — iy)2 2
Dy (u) = J%/yeReZ exp (_(y2]u)> dy=e 7.
1

Since the random sequence Z : Q) — RN is a zero mean i.i.d. sequence, it follows that @, (0) =jEZ; =0

and CD(Zzl) (0) = j2EZ? = —1. Using the Taylor expansion of the characteristic function ®z,, we have
L . (Xi—w) u " u? w2\ 1"
D =] |E ) = |y, | —= =1-— — .
o =L (10 78) = o ()] =13 (7))
For any u € IR, taking limit n € IN, we get the result. O

2 Strong law of large numbers

Definition 2.1. For a random sequence X : ) — RN defined on a probability space (Q,F, P) with bounded
mean E |X,| < oo for all n € N, we define the n-sum as S, £ "' ; X; and the empirical n-mean 57” for each
n € IN. For each n € IN, we define event

E,2{weQ:|S, —ES,| >ne}cT.

Theorem 2.2 (L* strong law of large numbers). Let X : QO — RN be a sequence of independent random variables
defined on probability space (Q), F, P) with bounded mean EX,, for each n € IN and uniformly bounded fourth central

moment sup,, ENIE(Xn — ]EXn)4 < B < co. Then, the empirical n-mean converges to limy, ]E}f” almost surely.




Proof. Recall that E(S, —ES,)* =E(LL, (X; —EX;))* = L E(X; —BX;)* + 310, ¥ B(X; — EX)2E(X; —
]EXj)z. Recall that when the fourth moment is bounded, then so is second moment. Hence, sup; n E(X; —
EX;)? < C for some C € R Therefore, from the Markov’s inequality, we have

E(S, — ES,)* o "B+ 3n(n— 1)C?

P(En) < ntet = ntet

It follows that the Y,y P(E;) < oo, and hence by Borel Canteli Lemma, we have
P{E;, for all but finitely many n} = 1.
Since, the choice of € was arbitrary, the result follows. O

Theorem 2.3 (L? strong law of large numbers). Let X : QO — RN be a sequence of pair-wise uncorrelated random
variables defined on a probability space (), F,P) with bounded mean EX,, for all n € N and uniformly bounded

variance sup,, . Var(Xy,) < B < co. Then, the empirical n-mean converges to lim, IE;?" almost surely.

Proof. For each n € N, we define events F, = E,2, and

k
Gné{ max S —S,2 —E(Sk—S,2)] >n2e}: U {weQ: Y (Xi —EX;) >nze}.
n2<k<(n+1)2 n2<k< (n+1)2 i=n2
From the Markov’s inequality and union bound, we have

n’ (n+1)>-1 2 2
", Var(X;) B (k—n*+1)B _(2n+1)°B

P(Fp) S B2 5= < gy P(Gy) < <

(Fx) ne? n2e2 (Gn) Pt ne? ne2

Therefore, e P(Fn) < coand Y,cn P(Gy) < oo, and hence by Borel Canteli Lemma, we have

lim S2—ES,

 lim max Sk —S,2 —E(Sk—S,2)
n n2

5 =0a.s.
n p2<k<(n+1)2-1 n

The result follows from the fact that for any k € IN, there exists n € IN such that k € {nz,. o (n+ 1)2 — 1}

and hence
‘Sk_lESk| < |Sn2_]ESn2| + |Sk_5n2_]E(Sk_Sn2)|
k = n2 n2 ’

O

Theorem 2.4 (L' strong law of large numbers). Let X : QO — RN be a random sequence defined on a probability
space (Q),F, P) such that sup,, . E | Xy| < B < co. Then, the empirical n-mean converges to lim, % almost surely.
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