
Lecture-16: Weak convergence

1 Convergence in distribution

Definition 1.1 (convergence in distribution). A random sequence X : Ω → RN defined on a probability
space (Ω,F, P) converges in distribution to a random variable X∞ : Ω′ → R defined on a probability space
(Ω′,F′, P′) if limn FXn(x) = FX∞(x) at all continuity points x of FX∞ . Convergence in distribution is denoted
by limn Xn = X∞ in distribution.

Proposition 1.2. Consider a random sequenceX : Ω → RN defined on a probability space (Ω,F, P) and a random
variable X∞ : Ω′ → R defined on another probability space (Ω′,F′, P′). Then the following statements are equivalent.

(a) limn Xn = X∞ in distribution.

(b) limn E[g(Xn)] = E[g(X∞)] for any bounded continuous Borel measurable function g : R → R.

(c) Characteristic functions converge point-wise, i.e. limn ΦXn(u) = ΦX∞(u) for each u ∈ R.

Proof. Let X : Ω → RN be a sequence of random variables and let X∞ : Ω′ → R be a random variable. We
will show that (a) =⇒ (b) =⇒ (c) =⇒ (a).

(a) =⇒ (b): Applying the bounded convergence theorem to any bounded continuous Borel measurable
function g : R → R, we have limn

∫
x∈R

g(x)dFXn(x) =
∫

x∈R
g(x) limn dFXn(x).

(b) =⇒ (c): Taking g(x) = ejux, we get the result.

(c) =⇒ (a): The proof of this part is technical and is omitted.

Example 1.3 (Convergence in distribution but not in probability). Consider a sequence of non-degenerate
continuous i.i.d. random variables X : Ω → RN and independent random variable Y : Ω′ → R, all with the
common distribution FY. Then FXn = FY for all n ∈ N, and hence limn Xn = Y in distribution. If the common
distribution FY is zero mean Gaussian with variance σ2, then Xn − Y is zero mean Gaussian with variance
2σ2. Therefore, for ϵ < σ

√
π and all n ∈ N

P{|Xn − Y|⩽ ϵ} = 1√
4πσ2

∫
z∈[−ϵ,ϵ]

e−z2/4σ2
dz ⩽

ϵ

σ
√

π
< 1.

It follows that P{|Xn − Y| > ϵ}⩾ 1 − ϵ
σ
√

π
for all n ∈ N, and hence lim Xn ̸= Y in probability.

Lemma 1.4 (Convergence in probability implies in distribution). Consider a sequence X : Ω →RN of random
variables and a random variable X∞ : Ω → R defined on a probability space (Ω,F, P), such that limn Xn = X∞ in
probability, then limn Xn = X∞ in distribution.

Proof. We will show that all continuity points x of FX∞ , we have limn→∞ FXn(x) = FX∞(x). Fix ϵ > 0. Since
x is a continuity point of non-decreasing function FX∞ , choose δ > 0 such that FX∞(x + δ)− FX∞(x − δ)< ϵ.
Therefore, it suffices to show that

FX∞(x − δ)⩽ lim inf
n→∞

FXn(x)⩽ lim sup
n→∞

FXn(x)⩽ FX∞(x + δ).

1



For the chosen δ> 0, we consider the event An(δ)≜ {ω ∈ Ω : |Xn(ω)− X∞(ω)| > δ}= {Xn /∈ [X∞ − δ, X∞ + δ]} ∈
F, and define events AXn(x)≜ {Xn ⩽ x} and AX∞(x)≜ {X∞ ⩽ x}. Then, we can write

AXn(x) ∩ AX∞(x + δ) ⊆ AX∞(x + δ), AXn(x) ∩ Ac
X∞

(x + δ) ⊆ An(δ),

AX∞(x − δ) ∩ AXn(x) ⊆ AXn(x), AX∞(x − δ) ∩ Ac
Xn
(x) ⊆ An(δ).

From the above set relations, law of total probability, and union bound, we have

FX∞(x − δ)− P(An(δ))⩽ FXn(x)⩽ FX∞(x + δ) + P(An(δ)).

From the convergence in probability, we have limn P(An(δ)) = 0, and the result follows.

Theorem 1.5 (Central Limit Theorem). Consider an i.i.d. random sequence X : Ω → RN defined on a probability
space (Ω,F, P), with EXn = µ and Var(Xn) = σ2 for all n ∈ N. We define the n-sum as Sn ≜ ∑n

i=1 Xi and consider

a standard normal random variable Y : Ω → R with density function fY(y) = 1√
2π

e−
y2
2 for all y ∈ R. Then,

lim
n

Sn − nµ

σ
√

n
= Y in distribution.

Proof. The classical proof is using the characteristic functions. Let Zi ≜
Xi−µ

σ for all i ∈ N, then the shifted
and scaled n-sum is given by Sn−nµ

σ
√

n = 1√
n ∑n

i=1 Zi. We use the third equivalence in Proposition 1.2 to show
that the characteristic function of converges to the characteristic function of the standard normal. We define
the characteristic functions

Φn(u)≜ Eexp
(

ju
(Sn − nµ)

σ
√

n

)
, ΦZi (u)≜ Eexp(juZi), ΦY(u)≜ Eexp(juY).

We can compute the characteristic function of the standard normal as

ΦY(u) =
1√
2π

∫
y∈R

e−
u2
2 exp

(
− (y − ju)2

2

)
dy = e−

u2
2 .

Since the random sequence Z : Ω → RN is a zero mean i.i.d. sequence, it follows that Φ(1)
Z1

(0) = jEZ1 = 0

and Φ(2)
Z1

(0) = j2EZ2
1 = −1. Using the Taylor expansion of the characteristic function ΦZ1 , we have

Φn(u) =
n

∏
i=1

Eexp
(

ju
(Xi − µ)

σ
√

n

)
=

[
ΦZ1

(
u√
n

)]n
=

[
1 − u2

2n
+ o

(
u2

n

)]n

.

For any u ∈ R, taking limit n ∈ N, we get the result.

2 Strong law of large numbers

Definition 2.1. For a random sequence X : Ω → RN defined on a probability space (Ω,F, P) with bounded
mean E |Xn| < ∞ for all n ∈ N, we define the n-sum as Sn ≜ ∑n

i=1 Xi and the empirical n-mean Sn
n for each

n ∈ N. For each n ∈ N, we define event

En ≜ {ω ∈ Ω : |Sn − ESn| > nϵ} ∈ F.

Theorem 2.2 (L4 strong law of large numbers). Let X : Ω → RN be a sequence of independent random variables
defined on probability space (Ω,F, P) with bounded mean EXn for each n ∈ N and uniformly bounded fourth central
moment supn∈N E(Xn − EXn)4 ⩽ B < ∞. Then, the empirical n-mean converges to limn

ESn
n almost surely.
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Proof. Recall that E(Sn −ESn)4 =E(∑n
i=1(Xi −EXi))

4 =∑n
i=1 E(Xi −EXi)

4 + 3∑n
i=1 ∑j ̸=i E(Xi −EXi)

2E(Xj −
EXj)

2. Recall that when the fourth moment is bounded, then so is second moment. Hence, supi∈N E(Xi −
EXi)

2 ⩽ C for some C ∈ R+. Therefore, from the Markov’s inequality, we have

P(En)⩽
E(Sn − ESn)4

n4ϵ4 ⩽
nB + 3n(n − 1)C2

n4ϵ4 .

It follows that the ∑n∈N P(En) < ∞, and hence by Borel Canteli Lemma, we have

P{Ec
n for all but finitely many n} = 1.

Since, the choice of ϵ was arbitrary, the result follows.

Theorem 2.3 (L2 strong law of large numbers). Let X : Ω → RN be a sequence of pair-wise uncorrelated random
variables defined on a probability space (Ω,F, P) with bounded mean EXn for all n ∈ N and uniformly bounded
variance supn∈N Var(Xn)⩽ B < ∞. Then, the empirical n-mean converges to limn

ESn
n almost surely.

Proof. For each n ∈ N, we define events Fn ≜ En2 , and

Gn ≜

{
max

n2⩽k<(n+1)2
|Sk − Sn2 − E(Sk − Sn2)| > n2ϵ

}
=

⋃
n2⩽k<(n+1)2

{
ω ∈ Ω :

∣∣∣∣∣ k

∑
i=n2

(Xi − EXi)

∣∣∣∣∣ > n2ϵ

}
.

From the Markov’s inequality and union bound, we have

P(Fn)⩽
∑n2

i=1 Var(Xi)

n4ϵ2 ⩽
B

n2ϵ2 , P(Gn)⩽
(n+1)2−1

∑
k=n2

(k − n2 + 1)B
n4ϵ2 ⩽

(2n + 1)2B
n4ϵ2 .

Therefore, ∑n∈N P(Fn) < ∞ and ∑n∈N P(Gn) < ∞, and hence by Borel Canteli Lemma, we have

lim
n

Sn2 − ESn2

n2 = lim
n

max
n2⩽k<(n+1)2−1

Sk − Sn2 − E(Sk − Sn2)

n2 = 0 a.s.

The result follows from the fact that for any k ∈ N, there exists n ∈ N such that k ∈
{

n2, . . . , (n + 1)2 − 1
}

and hence
|Sk − ESk|

k
⩽

(
|Sn2 − ESn2 |

n2 +
|Sk − Sn2 − E(Sk − Sn2)|

n2

)
.

Theorem 2.4 (L1 strong law of large numbers). Let X : Ω → RN be a random sequence defined on a probability
space (Ω,F, P) such that supn∈N E |Xn|⩽ B < ∞. Then, the empirical n-mean converges to limn

ESn
n almost surely.
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