Lecture-17: Tractable Random Processes

1 Examples of Tractable Stochastic Processes

Recall that a random process X : QO — XT defined on the probability space (Q),F, P) with index set T and
state space X C IR, is completely characterized by its finite dimensional distributions Fx : RS — [0,1] for all
finite S C T, where

Fx(xs) 2 P(Axg(xs)) = P(Nses X5 (—00,x]), x5 € R,

Simpler characterizations of a stochastic process X are in terms of its moments. That is, the first moment
such as mean, and the second moment such as correlations and covariance functions.

mx(t) = EX;, Rx(t,5) 2 EX; X, Cx(t,s) 2 E(X; — mx(t))(Xs — mx(s)).

In general, it is very difficult to characterize a stochastic process completely in terms of its finite dimensional
distribution. However, we have listed few analytically tractable examples below, where we can completely
characterize the stochastic process.

1.1 Independent and identically distributed (i.i.d. ) processes

Definition 1.1 (i.i.d. process). A random process X : ) — X7 is an independent and identically distributed
(i.i.d. ) random process with the common distribution F : R — [0,1], if for any finite S C T and a real vector
x5 € R® we can write the finite dimensional distribution for this process as

Fxg(xs) = P(Nses { Xs(w) < x5}) = IIF(%)'

Remark 1. It’s easy to verify that the first and the second moments are independent of time indices. That is,
if 0 € T then X; = Xj in distribution, and we have

mx = EXo, Rx(t,s) = (EX§)Lymgy + MLt zs}s Cx(t,s) = Var(Xo)Lj;_g).

1.2 Stationary processes

Definition 1.2 (Stationary process). We consider the index set T C R that is closed under addition and
subtraction. A stochastic process X : ) — X is stationary if all finite dimensional distributions are shift
invariant. That is, for any finite S C T and t € T, we have

FXS(xS) = P(QSES {Xs(w) < xs}) = P(mses {Xs+t(w) < xs}) = FXHS (xS)'

Remark 2. That is, for any finite # € IN and ¢t € R, the random vectors (X ,...,Xs,) and (Xs,+¢,..., Xs;+t)
have the identical joint distribution for all s; < ... <s.

Lemma 1.3. Any ii.d. process with index set T C R is stationary.



Proof. LetX: Q) — XT be ani.id. random process, where T C R. Then, for any finite index subset S C T, t € T
and xg € RS, we can write

s(xs) =P(({Xs <xs}) =[[PoX; H(—00,xs] = [ [Po Xk (—o0,x5] =P( [ {Xs < xs}) = Fx,, ¢ (xs).
s€S s€S s€S sEet+S

Fx(

First equality follows from the definition, the second from the independence of process X, the third from the
identical distribution for the process X. In particular, we have shown that process X is also stationary. [

Remark 3. For a stationary stochastic process, all the existing moments are shift invariant when they exist.
Definition 1.4. A second order stochastic process X has finite auto-correlation Rx (t,t) < co forall t € T.

Remark 4. Thisimplies Rx(t1,t) < co by Cauchy-Schwartz inequality, and hence the mean, auto-correlation,
and the auto-covariance functions are well defined and finite.

Remark 5. For a stationary process X, we have X; = X and (X, X;) = (X¢—s, Xo) in distribution. Therefore,
for a second order stationary process X, we have

myx =EX, Rx(t,s) = Rx(t —s,0) = EX;—sXo, Cx(t—s,0) =Rx(t—s,0) —
Definition 1.5. A random process X is wide sense stationary if
1. mx(t) =mx(t+s) foralls,t € T, and
2. Rx(t,8) =Ry(t+u,s +u) foralls,t,ucT.

Remark 6. 1t follows that a second order stationary stochastic process X, is wide sense stationary. A second
order wide sense stationary process is not necessarily stationary. We can similarly define joint stationarity
and joint wide sense stationarity for two stochastic processes X and Y.

Example 1.6 (Gaussian process). Let X : O — RR be a continuous-time Gaussian process, defined by its
finite dimensional distributions. In particular, for any finite S C R, column vector xg € RS, mean vector
1s = EXs, and the covariance matrix Cg £ EXg XT, the finite-dimensional density is given by

fxs(xs) = L L xs —us)'C (xs—ils)>

ex
(27)8172, /det(Cg) T < 2
Theorem 1.7. A wide sense stationary Gaussian process is stationary.

Proof. For Gaussian random processes, first and the second moment sulffice to get any finite dimensional
distribution. Let X be a wide sense stationary Gaussian process and let S C R be finite. From the wide
sense stationarity of X, we have EXg = uls and

E(Xs —pu)(Xy —pu) =Cs—y, foralls,u€S.

This means that Cg = Cy, g, and the result follows.

1.3 Random Walk

Definition 1.8. Let X : O — XN be an i.i.d. random sequence defined on the probability space (Q,F, P) and
the state space X = R?. A random sequence S : O — X%+ is called a random walk with step-size sequence
X,if So£0and S, £ Y | X; forn € N.



Remark 7. We can think of S, as the random location of a particle after n steps, where the particle starts
from origin and takes steps of size X; at the ith step. From the i.i.d. nature of step-size sequence, we observe
that ES, = nEX; and Cg(n,m) = (n A m) Var[X].

Remark 8. For the process S : Q — XN it suffices to look at finite dimensional distributions for finite sets
[n] €N for all n € N. If the iid. step-size sequence X has a common density function, then from the
transformation of random vectors, we can find the finite dimensional density

1 n
fsy,...5,(51,52,.-.,50) = fol,._.,xn (51,2 = $1,---,5n — Sp—1) = fx, (1) | [ fx, (si = si1)-
i=2
Recall that J;;(s) = % = 1yj<;y and hence J(s) is a lower triangular matrix with all non-zero entries being
j

unity, and hence |J(s)| = 1.

Theorem 1.9. The stochastic process S : () — Z%* has stationary and independent increments.
Proof. One needs to show that for (my,...,m,) C Z ., thejoint distribution of increments (S, — Sy, - -, Sm, —
Sm,_,) is independent and distributed identically to (Skim, — Sk-mys-+-sSk+m, — Sk4m,_,) for any and
k € Z,. For any j € [n — 1], we define event space &; £ 0(Xm;+1,---, Xmj,;) and observe that the jth in-
crement Sy, — Sp; is measurable with respect to jth event space €;. Since X is an independent process,

it follows that (€4,...,€,_1) are independent event spaces, and hence so are the increments. Stationarity
of increments follow from the fact that the process X is i.i.d. and jth increment Sktmjiy — Skgm; IS sum of

mj,1 — mj i.i.d. random variables, and hence an identical distribution for allk € Z . O

Corollary 1.10. Let p € N and for each i € [p] let n € NP,k € Zi such that ny <... <npandky < ... <kp. Then,
we can write the joint mass function

p
Ps, .50, (k1o kp) = P(Qicp {Sn, = ki}) = qpsniml (ki —ki_1).
i=
Proof. The result follows from stationary and independent increment property of the random walk S. [

Remark 9. For a one-dimensional random walk S : ) — ZI with i.i.d. step size sequence X : Q) — {O,l}N
such that P{X; =1} = p, the distribution for the random walk at nth step S, is Binomial (1, p). That is,

P{S, =k} = (Z) k1 —p) %, ke{o,...,n}.

1.4 Lévy processes

A right continuous with left limits stochastic process X : ) — R for index set T C R with Xy = 0 almost
surely, is a Lévy process if the following conditions hold.

(L1) The increments are independent. For any instants 0 < t; < fp < -+ < t; < oo, the random variables
Xt2 — th,Xt3 — th, .o .,th — th71 are independent.

(L2) The increments are stationary. For any instants 0 <t <t < --- < t, < co0 and time-difference s > 0,
the random vectors (X;, — Xy, X, — Xty ..., X, — Xp, ;) and (Xsit, — Xogty, Koty — Koty oo Koty —
Xs+t, ,) are equal in distribution.

(L3) Continuous in probability. For any € > 0 and ¢ > 0 it holds that lim_,o P({|X;, — X¢| > €}) =0.

Example 1.11. Two examples of Lévy processes are Poisson process and Wiener process. The distribution
of Poisson process at time ¢ is Poisson with rate Af and the distribution of Wiener process at time ¢ is zero
mean Gaussian with variance ¢.

Example 1.12. A random walk S : Q — X%+ with i.i.d. step-size sequence X : QO — XN, is non-stationary with
stationary and independent increments. To see non-stationarity, we observe that the mean mg(n) = nEX;
depends on the step of the random walk. We have already seen the increment process of random walks.



1.5 Markov processes

Definition 1.13. A stochastic process X is Markov if conditioned on the present state, future is independent
of the past. We denote the history of the process until time t as F; = 0(Xs,s < t). That is, for any ordered
index set T containing any two indices u > t, we have

P({Xy < xu} | T) = P({Xu < 1} | 0(X0)).
The range of the process is called the state space.

Remark 10. We next re-write the Markov property more explicitly for the process X. For all x,y € X, finite
set S C T such that max$S < t < u, and Hg = Nges {Xs < x5} € Ft, we have

P({Xu <y} | Hs N {X; < x}) = P({Xu <y} [ {X: < x}).

Remark 11. When the state space X is countable, we can write Hg = Nscs { X5 = x5} and the Markov property
can be written as

P({Xu =y} | Hs N {X¢ = x}) = P({ Xy = xu} [ { Xt = x}).

Remark 12. In addition, when the index set is countable, i.e. T = Z,, then we can take past as S =
{0,...,n — 1}, present as instant n, and the future as n + 1. Then, the Markov property can be written
as

P({Xus1 =¥} | Hoot N {Xu = x}) = P{Xps1 =y} | {Xu = 2}),
forallne Z,x,y € X.

We will study this process in detail in coming lectures.

Example 1.14. A random walk S : Q) — X%+ with i.i.d. step-size sequence X : Q — XN, is a homogeneous
Markov sequence. For any n € Z and x,y,s1,...,5,—1 € X, we can write the conditional probability

P({Sus1 =¥} {80 = %,Sum1 = Su-ts-,S1 =513) = P({Sus1 — Su =y — x}) = P({Sus1 =y} | {Sn = x})-
Lemma 1.15. The stochastic process S : () — Z%* is homogeneously Markov.
Proof. Since the process has stationary and independent increments, we have

P({Susm =k} | {S1 =k1,82 =k, ..,Sn = kn}) = P({Snsm — Su =k —kn}) = P({Snsm =k} | {Sn = kn?).
]
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