Lecture-18: Stopping Times

1 Stopping times

Let (Q,F, P) be a probability space. Consider a random process X : Q0 — X' defined on this probability
space with state space X C R and ordered index set T C IR considered as time.

Definition 1.1. A collection of event spaces denoted G, £ (Gt CF:teT)is called a filtration if G5 C ¢
forall s <t.

Remark 1. For the random process X : QO — X7, we can find the event space generated by all random
variables until time f as F; = 0(Xs,s < t). The collection of event spaces F, 2(F:te T) is a filtration.

Definition 1.2. The natural filtration associated with a random process X : QO — X7 is given by F, £
(T :t € T) where F; 2 0(Xs,5 < t).

Remark 2. For a random sequence X : Q — XN, the natural filtration is a sequence Fo = (F, : n € N) of
event spaces F, £ 0(Xy,...,Xy) foralln € N.

Remark 3. If the random sequence X is independent, then the random sequence (Xn+j :j € N) is inde-
pendent of the event space 0(X3, ..., Xy).

Example 1.3. For a random walk S with step size sequence X, the natural filtration of the random walk
is identical to that of the step size sequence. That is, 0(Sy,...,S,) = 0(Xy,...,Xy) for all n € N. This
follows from the fact that for all n € IN, we can can write S; = Zle Xjand X; =S; — S; 1 forallj € [n].
That is, there is a bijection between (Xj,...,X;) and (Sy,...,Sx).

Definition 1.4. A random variable 7: () — T is called a stopping time with respect to a filtration F, if
(a) the event 1 (—oo,t] € Fiforall t € T, and
(b) the random variable 7 is finite almost surely, i.e. P{T < co} = 1.

Remark 4. Intuitively, if we observe the process X sequentially, then the event {7 < t} can be completely
determined by the observation (X;,s < t) until time ¢. The intuition behind a stopping time is that its
realization is determined by the past and present events but not by future events. That is, given the
history of the process until time ¢, we can tell whether the stopping time is less than or equal to ¢ or not.
In particular, E[1y.<p | F4] = 1< is either one or zero.

Definition 1.5 (First hitting time). For a process X : ) — XT and any Borel measurable set A € B(X), we
define the first hitting time 74 : O — T'U {co} for the process X to hitstatesin A, as 14 Zinf{t € T: X; € A}.

Example 1.6. We observe that the event {T}‘? < t} ={X; € Aforsomes <t} € Fforallt € T. It follows
that, if T4 is finite almost surely, then 74 is a stopping time with respect to filtration F,.

Proposition 1.7. For a random sequence X : Q — XN, an almost sure finite discrete random variable T : Q) —
IN U {co} is a stopping time with respect to this random sequence X iff the event {t =n} € 0(Xy,...,Xy) for
allm € N.

Proof. From Definition[1.4) we have {t =n} = {t <n}\ {t <n -1} € ¢(Xy,..., X;,). Conversely, from
the theorem hypothesis, it follows that {t <n} = U _, {t=m} c o(Xy,..., X;). O



Example 1.8. Consider a random sequence X : (2 — XN with the natural filtration F., and a measurable
set A € B(X). If the first hitting time 74 : O — IN U {oo} for the sequence X to hit set A is almost

surely finite, then 74 is a stopping time. This follows from the fact that {t =n} = ﬂ;(’;ll {Xx ¢ A} N
{Xn € A} € F, for each n € IN.

Definition 1.9. Consider a random process X : (3 — YR+ with discrete state space X C R. For each state

y € X, we define T){(y 102 0and inductively define the kth hitting time to a state y after time t =0, as

o 2int{e> X =y}, ke

Remark 5. We observe that {T){(y bk < t} € F; for all times t € R,.. Hence if T){(y bk is almost surely finite,
then it is a stopping time for the process X.

Definition 1.10. For a discrete valued random sequence X : Q — XN, the number of visits to a state
y € X in first n time steps is defined as Ny (n) £ Y}_, 1(x,—y) foralln € N.

Remark 6. We observe that N, : O — Z%* is a random walk with the Bernoulli step size sequence
(L{x,—y} : k € N). Further, T){(y}’k = Tlg;} =inf{n € N:N,(n) = k}. We also observe that {N, (n) <k} =
{7 > n} and {Ny(n) =k} = {f <n < 7"V}

Remark 7. We observe that the number of visits to state y in first n steps of X is also given by
k . k
Ny(n):sup{k€Z+:T){(y} gn}:mf{kEN:T}{(y} >n}—1:k§\l]l{T){(y},k<n}.

This implies that Ny (n) + 1 is the first hitting time to set of states {n +1,n +2,...} for the increasing
random sequence (T}{(y Mke IN).

Lemma 1.11 (Wald’s Lemma). Consider a random walk S : Q — R%+ with ii.d. step-sizes X : QO — RN
having finite IE | X1|. Let T be a finite mean stopping time with respect to this random walk. Then,

E[S.] = E[X;]E[7].

Proof. Recall that the event space generate by the random walk and the step-sizes are identical. From the
independence of step sizes, it follows that X}, is independent of o(Xy, X, ..., X;,—1). Since 7 is a stopping
time with respect to random walk S, we observe that {t > n} = {t >n -1} € 0(Xy,Xy,...,X;,—1), and
hence it follows that random variable X, and indicator 1;;,, are independent and ]E[Xn]l{T>n}] =
EX1E1(>,). Therefore,

E[S] = E[éxn] =E[ L Xul(on] = L EXIE (L (e | = EXE = E[X:]E[7].

nelN

Y Len

nelN

We exchanged limit and expectation in the above step, which is not always allowed. We were able to
do it by the application of dominated convergence theorem. O

Corollary 1.12. Consider the stopping time Tsi} £ min{n € N:S, =i} for an integer random walk S : O —
Z%’ with i.i.d. step size sequence X : Q0 — ZN. Then, the mean of stopping time ]Eré{l} =i/EX;.

Proof. This follows from the Wald’s Lemma and the fact that S, = i. O

1.1 Properties of stopping time
Lemma 1.13. Let 7y, T be two stopping times with respect to filtration Fo. Then the following hold true.
i- min{t, 2} is a stopping time.

ii_ If T is separable, then 1) + T is a stopping time.



Proof. Let 11, T2 be stopping times with respect to a filtration F = (F; : t € T).
i_ Result follows since the event {min {7, n} >t} = {1 >t} N {mn >t} € F1.

ii_ A topological space is called separable if it contains a countable dense set. Since IR is separable
and ordered, we assume T = R without any loss of generality. It suffices to show that the event
{11 + o <t} € F; for T = R,.. To this end, we observe that

{fn+n<t}= U {r <t—s,1m<s} €Tt
s€Qy: s<t

1.2 Strong independence property and applications

Theorem 1.14 (Strong independence property). Let X : QO — XR+ be an independent random process with
natural filtration F,, and T : QO — R a stopping time with respect to Fo, then (Xr4s : s € Ry) is independent
of history (Xs :s < T).

Definition 1.15. We can define the kth return time to state y for the random process X : Q — XR+ as
the interval between two successive visits to state y, that is for all k € IN

& K k-1 _ .
A& ok _ o9 :1nf{s€]R+:XT){(y},k1+s:y}.

Remark 8. We observe that T){(y - Z}‘Zl H ;{(y Vi for all k € N. That is, the hitting times sequence (T){(y e
k € IN) is a random walk with step-size sequence being return times (H){(y}’] :j € N). Therefore, if H){g Vi
lyhk

is almost sure finite for all j € [], then the finite sum 7,”’" is almost sure finite for all k € IN.

Remark 9. From the bijection between hitting and return times, we observe that U(T){(y}'k) tken]) =
(T(H){(y iz j € [n]). Recall that T)I;Iy WFL S by definition. If passage times are independent and i.i.d.
from second passage time, then it follows from the Wald’s Lemma that

EHYY + B[N, (n)JEHY? > (n+1).

Example 1.16. We also observe that the kth hitting time to {1} by a Bernoulli step size sequence X :
Q — {0,1}N is the first hitting time to {k} by random walk S: ) — Z%*. That is,

1}k k q k—1 .
T — o —inf(neN: s, =k} = 7 }+1nf{n€]N:STS{k1}+n—STS{k1}—1}.

Lemma 1.17. For an i.i.d. Bernoulli random sequence X : €} — {0,1}N with EX; € (0,1), the kth hitting time

to state 1 is a stopping time, and T){(l}’k =% Y where Y : QO — NN is an i.i.d. random sequence distributed

identically to ’L'){(l} .

Proof. When the Bernoulli step size sequence X is i.i.d. with EX; = p € (0,1), we get that P {Tél} = n} =
(1— p)*~1pforall n € N. It follows that

P{Ts{l} < oo} = P(UHGN{Tél} :n}) =) P{Ts{l} :n} =1.

neN
Hence, the random time Ts{l} is finite almost surely. We will show that Ts{k} is finite almost surely
. . . . . =1} . oo
for all k € N by induction. By induction hypothesis, TS{ } is finite almost surely. Then STék71}+n -
S ey = Z}Ll XT{k—1}+j is the sum of n i.i.d. Bernoulli random variables independent of Ts{kfl} by strong
S S

independence property, and hence has distribution identical to S,,. Further, This implies that Ték} =

Ts{k_l} + Tél}, where Ts{l} has the identical distribution to T){(l} and is independent of Ts{k_l}. O
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