Lecture-19: Discrete Time Markov Chains

1 Markov processes

We have seen that i.i.d. sequences are easiest discrete time random processes. However, they don’t capture
correlation well.

Definition 1.1. A stochastic process X : Q — XT with state space X and ordered index set T is Markov if
conditioned on the present state X;, future o(X,,u > t) is independent of the past 0(X;s,s < t). We denote
the history of the process until time f as F; £ 0(Xs,s < t). That is, for any Borel measurable set B € B(X)
any two indices u > t, we have

P({Xu € B} | 97) = P({X, € B} | 0(X,)).

Remark 1. We next re-write the Markov property more explicitly for the process X : O — RR. Forall x,y € X,
finite set S C R such that max$ < t < u, and Hg(xg) £ Nyes {Xs < x5} € Ft, we have

P({Xu <y} [ Hs(xs) N {X: < x}) = P({Xu <y} [ {X; < x}).

1.1 Discrete time Markov chains

Definition 1.2. For a state space X C R and the random sequence X : Q — X%+, we define the history until
timen € Z, as I, = o(Xq,..., Xn).

Remark 2. Recall that the event space F, is generated by the historical events Ax (x) £ N {X; < x;} where
x e R

Remark 3. When the state space X is countable, the event space F;, is generated by the historical events
Hy(x) £ N {X; = x;}, where x € X"™1. That is, F, = o(Hy(x) : x € X"*1)

Definition 1.3. For a countable set X, a discrete-valued random sequence X : QO — X%+ is called a discrete
time Markov chain (DTMC) if for all positive integers n € Z, all states x,y € X, and any historical event
H, 1= 021;10 {Xm = xm} € Fy for (xg,...,x,-1) € X", the process X satisfies the Markov property

P({Xus1 =¥} | Hoo1 N {Xn =x}) = P X1 =y} | {Xu =7}

).
Remark 4. The above definition is equivalent to P({X,11 < x} | F,) = P({Xy41 < x} | 0(Xy)) for discrete
time discrete state space Markov chain X, since &, = 0(Hy(x) : x € X"") and (X)) = c({X,, = x},x € X).

Example 1.4 (Random Walk). A random walk S : Q — XN with independent step-size sequence X : Q) —
XN is Markov for a countable state space X that is closed under addition. Given a historical event

Hy,—1(s) £ N{_1 {Sx = s¢} and the current state {S, = s, }, we can write the conditional probability

P({Sn+1="5n41} | Hy—1(8) N {Sn =sn}) = P({ X1 =5n+1 — Su} | Hy—1(8) N {Sn =sn})
= P({Sn+1=5ut1} | {Sn =s5n}) = P{Xp+1=5us1 —5n}.

The equality in the second line follows from the independence of the step-size sequence. In particular, from
the independence of X;,.1 from the collection o(Sp, X1,..., Xn) = 0(S0,S1,---,5n)-



1.2 Transition probability matrix

Definition 1.5. We denote the set of all probability mass functions over a countable state space X by
M(X) £ {ve[0,1]*: Tyeqve =1}.

Definition 1.6. The transition probability matrix at time 7 is denoted by P(n) € [0,1]**¥, such that its
(x,y)th entry is denoted by pyy(n) £ P({X,11 =y} | {Xu =x}), that is the transition probability of a
discrete time Markov chain X from a state x € X at time 7 to state y € X at time n + 1.

Remark 5. We observe that each row Py (1) £ (pxy(n) : y € X) € M(X) is the conditional distribution of X,
given the event {X,, = x}.

Definition 1.7. A matrix A € ]Rf *X with non-negative entries is called sub-stochastic if the row-sum
Yyexdxy < 1 for all rows x € X. If the above property holds with equality for all rows, then it is called

a stochastic matrix. If matrices A and AT are both stochastic, then the matrix A is called doubly stochastic.

Remark 6. We make the following observations for the stochastic matrices.
i- Every probability transition matrix P(n) is a stochastic matrix.
ii_ All the entries of a sub-stochastic matrix lie in [0,1].
iii. Each row Ax £ (axy : y € X) of the stochastic matrix A € RY*X belongs to M (X).
iv_ Every finite stochastic matrix has a right eigenvector with unit eigenvalue. This can be observed by
taking 17 = [1 ... 1] to be an all-one vector of length |X|. Then we see that A1 = 1, since

Al)y = Ay 1, = ayy = 14, for each x € X.
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v_ Every finite doubly stochastic matrix has a left and right eigenvector with unit eigenvalue. This follows
from the fact that finite stochastic matrices A and AT have a common right eigenvector 1. It follows
that A has a left eigenvector 17.

vi_ For a probability transition matrix P(n), we have ¥ c f(y) pxy(n) = E[f (Xy11) | {Xn = x}].

1.3 Homogeneous Markov chains

In general, not much can be said about Markov chains with index dependent transition probabilities. We
consider the simpler case where the transition probabilities py, (1) = pyxy, are independent of the index.

Definition 1.8. A discrete time Markov chain with the probability transition matrix P(n) that is indepen-
dent of the index, is called time homogeneous.

Example 1.9 (Integer random walk). For a one-dimensional integer valued random walk S : Q — ZN with
i.i.d. unit step size sequence X : Q0 — {—1,1} such that P {X; = 1} = p, the transition operator P € [0,1]%*Z
is given by the entries pxy, = ply, .1y + (1 — p)lyy—x_1) forallx,y € Z.

Example 1.10 (Sequence of experiments). Consider a random sequence of experiment outcomes X : (2 —
{0,1}%*, such that P({X,41 =0} | {X, =0}) =1—gand P({X,41 =1} | {Xy, =1}) =1—pforalln e Z,.
Then, we can write the probability transition matrix as

1-q g }
p= .
Tl

Definition 1.11. Consider a time homogeneous Markov chain X : Q) — X%+ with countable state space X
and transition matrix P. We would respectively denote the conditional probability of events and conditional
expectation of random variables, conditioned on the initial state { Xy = x}, by

Px(A)£P(A| {Xo=x}), Ex[Y]£E[Y | {Xo=x}].



Proposition 1.12. Conditioned on the initial state, any finite dimensional distribution of a homogeneous Markov
chain is stationary. That is, for any finite n,m € Z ;. and states xo, ...,x, € X, we have

P(NLy {Xi = xi} | {Xo=2x0}) = P(Ny {Xnyi = x:} | {Xw = x0}) —ﬁl’x;m'

Proof. Consider a homogeneous Markov chain X : Q — X%+ with natural filtration F, such that F, =
o(Xo,...,Xn) for each n € IN. Using the property of conditional probabilities and Markovity of X, we
can write the conditional probability of sample path (Xj,...,X;) given the event {Xy = x¢ } as
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Using the property of conditional probabilities and Markovity of X, we can write the conditional probability
of sample path (X, 41,. .., Xm+n) given the event {X,, = xo} as

P( iy A Xt = xi} [{Xm = x0}> - lﬁp({xmﬂ' =xi} [{Xmyi-1= XH})-

From time-homogeneity of transition probabilities of Markov chain X, it follows that both the transition
probabilities are identical and equal to [T ; px; ;- O

Corollary 1.13. The n-step transition probabilities are stationary for any homogeneous Markov chain. That is, for
any states xg,x, € X and n,m € N, we have P({Xy4m = xn} | {Xm = x0}) = P{Xn =2} | {Xo =x0}).

Proof. It follows from summing over all possible paths (X,...,X,) and (X, ..., Xm+n). In particular, we
can partition events { X, = x,, } and {X;,4+» = x5} in terms of unions over disjoint paths

Xo=xd= U (N (Xi=x}), Knrw=xat = U (0 Koy =51} ).
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The result follows from the countable additivity of conditional probability for disjoint events of taking
distinct paths, and the fact that probability of taking same path is identical for both sums. O

1.4 Transition graph

A time homogeneous Markov chain X : O — XN with a probability transition matrix P, is sometimes repre-
sented by a directed weighted graph G = (X, E,w), where the set of nodes in the graph G is the state space
X, and the set of directed edges is the set of possible one-step transitions indicated by the initial and the
final state, as

E£{[xy) €EXXX:py >0}.

In addition, this graph has a weight w, = px, on each edge e = [x,y) € E.

Example 1.14 (Integer random walk). The time homogeneous Markov chain in Example|[1.9|can be repre-

sented by an infinite state weighted graph G = (Z,E,w), where the edge set is
E={(nn+1):neZ}U{(nn—-1):neZ}.

We have plotted the sub-graph of the entire transition graph for states {—1,0,1} in Figure

Example 1.15 (Sequence of experiments). The time homogeneous Markov chain in Example can be
represented by the following two-state weighted transition graph G = ({0,1},E,w), plotted in Figure @



Figure 1: Sub-graph of the entire transition graph for an integer random walk with i.i.d. step-sizes in { —1,1}
with probability p for the positive step.

p

Figure 2: Markov chain for the sequence of experiments with two outcomes.

1.5 Random mapping theorem

We saw some example of Markov processes where X, = X;,_ 1+ Z,,and Z: Q) — AN is an i.id. sequence,
independent of the initial state Xy. We will show that any discrete time Markov chain is of this form, where
the sum is replaced by arbitrary functions.

Theorem 1.16 (Random mapping theorem). For any DTMC X : Q) — X%+, there exists an ii.d. sequence
Z € AN and functions f, : X x A — X such that X, = fu(Xy_1,Zn) forall n € N.

Remark 7. A random mapping representation of a transition matrix P(n) on state space X is a function
fn: X x A= X, along with a random variable Z,, : (0 — A, satisfying for all x,y € X,

P{fu(x,Zn) =y} = pxy(n).

Proof. It suffices to show that every transition matrix P(n) has a random mapping representation. Then, for
the mapping f,; and the i.i.d. sequence Z : () — AN we would have X, = fn(Xn-1,Zy) forall n € N.

Let A £ [0,1}, and we choose the i.i.d. uniform sequence Z : () — AN. Since X is countable, it can be
ordered. We let X = IN without any loss of generality. We set Fy, (1) £ Yw<y Pxw(n) and define function
fn: X x A — X for all pairs (x,z) € X x A by

fulx,z) 2 Z]Ny]l{Fx,y—l(n)<Z<Fx,y<n)} =inf{y € X:z < Fyy(n)}.
ye

Since f,(x,Z,) is a discrete random variable taking value y € X, iff the uniform random variable Z, lies in
the interval (Fy,_1(n), Fyy(n)]. Thatis, the event {f,(x,Z,) =y} = {Zy € (Fyy_1(n),Fyy(n)]} forally € X.
It follows that

P{fu(x,Zn) =y} = P{Fx,yfl(”) <Zny< Px,y(”)} = Fx,y(”) - Px,yfl(”) = ny(”)-
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