Lecture-23: Invariant Distribution

1 Invariant Distribution

Let X : Q) — X%+ be a time-homogeneous Markov chain with transition probability matrix P: X x X — [0, 1].

Definition 1.1. A probability distribution 77 € M(X) is said to be invariant distribution for the Markov
chain X if it satisfies the global balance equation 7t = 7tP.

Definition 1.2. When the initial distribution of a Markov chain is v € M(X), then the conditional probabil-
ity is denoted by P, : ¥ — [0,1] defined by

P,(A) = ) v(x)Py(A) forall events A € .
xeX

Definition 1.3. For a Markov chain X : Q — X%+, we denote the distribution of random variable X,, : QO — X
by v, € M(X) forall n € Z. That s, v, (x) £ Py, { X, = x} forall x € X.

Remark 1. We observe that v, (x) =Y, e vo(z) (P")y for all x € X.

Remark 2. Facts about the invariant distribution 7.

i- The global balance equation 7t = 7P is a matrix equation, that is we have a collection of |X| equa-
tions 71y = ) e 7TxPxy for each y € X.

ii- The invariant distribution 7t is left eigenvector of stochastic matrix P with the largest eigenvalue 1.
The all ones vector is the right eigenvector of this stochastic matrix P for the eigenvalue 1.

iii_ From the Chapman-Kolmogorov equation for initial probability vector 7r, we have m = tP" for
n € N. Thatis, if vg = 71, then v, = wforalln € Z ..

iv_ Resulting process with initial distribution 7 is stationary, and hence have shift-invariant finite
dimensional distributions. For example, for any k,n € Z, and xy,...,x; € X, we have

Pr{Xo=1x0,...,.Xn =xn} = Pr{Xek =%0,..., Xjtn = Xn} = TxyPxox; - - - Pxy_1%n-

v_ For an irreducible Markov chain, if 7t, > 0 for some x € X, then the entire invariant vector 7t is
positive. To this end, we will show that 7r, > 0 for all states y € X. Let y € X, then from the

irreducibility of Markov chain, there exists an m € Z such that p,(fyn) > 0. Further, m = mP™ and
hence 77, > nxp,(!;) > 0.
vi- Any scaled version of 7t satisfies the global balance equation. Therefore, for any invariant vector

a € XR+ of a positive recurrent transition matrix P, the sum ||a|; = Y_,c &y must be finite. We can
normalize « and get an invariant probability measure 7r = ﬁ
1

Theorem 1.4. An irreducible Markov chain with transition probability matrix P : X x X — [0, 1] is positive recurrent
iff there exists a unique invariant probability measure w € M (X) that satisfies global balance equation 7w = P and
nx:ﬁ >0forall x € X.



Proof. Consider an irreducible Markov chain X : Q — X%+ with transition probability matrix P. We will
first show that positive recurrence of X implies the existence of a positive invariant distribution 7r and its
uniqueness. Then we will show that the existence of a unique positive invariant distribution 7t implies
positive recurrence of X.

Implication: For Markov chain X, let the initial state be Xy = x. Recall that the number of visits to state
y € X in the first n steps of the Markov chain X is denoted by Ny(n) = Y_; Lix,—y)- It follows that

YLyex Ny(n) = n for each n € IN. Let Hy = T){(x} " be the first recurrence time to state x € X, then we
have Ny(Hy) =1 and Y cx Ny(Hx) = Hx.

Existence: We define a vector v € RY by v, = E[N,(Hy)] for each y € X. We observe that v, >0
for each state y € X. In particular, vx = 1. Since X is positive recurrent, we get that }_, cxc vy =

EyHy = pyx < co. We will show that the vector v satisfies the global balance equation v = vP. To

see this, we first define /\,(f;) 2P, {Xn =y,n < Hy} for all n € N and states x,y € X. We observe

that A)((ly) = pxy for each y € X. Next, we observe from the monotone convergence theorem, that

oy =ExNy(He) =Ex ¥ Uiy ey = L PeAXa=yn<He}= Y AL 1)
nelN nelN nelN

For n > 2, partitioning the event {X,, = y,n < Hy} by the events ({X,,_1 =z} :z2€ X\ {x}), the
countable additivity of conditional probablhty for disjoint events, and the definition of condi-
tional probability, we get

MY = Y PUXn =y} | {Xu1 =21 < He, Xo = x})Pe{ X1 = 2,n < Hy}.
Z#X

Recall that since Hy is adapted to natural filtration F, of Markov chain X, wehave {n < Hy, X = x} =
{Xo=x}N{Hy>n—1}° € F, 1. Together with the Markov property of X and the fact that
{Xy-1=2zn<Hy}={X,_1=2zmn—1< Hy}, we obtain

My = L P{X =y} [{Xa1 =2DPe{Xer =2 —1<He} = L AL Vpsy. @
z#X z#X
Substituting the expression for )t,((y in (2) into the expression for v, = }_,cN Aiy in (I) and using
the fact that v, = 1, we obtain

Uy =pay )Y AL sz = UxPry+ ) VzPay = ), UxPay-
n>2z+x zF#x xeX

Since v has a finite sum, it follows that 7 £ T :x o is an invariant distribution for the Markov

chain X with the transition matrix P. In addition, we have 7, = 3 :;‘C oy = % > 0.
! xx

Uniqueness: Next, we show that this is a unique invariant measure independent of the initial state x,
and hence 71, = P‘Lw > 0 forall y € X. For uniqueness, we observe from the Chapman-Kolmogorov

equations and invariance of 7 that = = %H(P + P% 4.+ P"). Hence, Ty = Y xeX nx% Yiq p,g;)

for all states y € X. Taking limit n — co on both sides, and exchanging limit and summation
on right hand side using bounded convergence theorem for summable series 77, we get 7, =

1 _ 1
iy Lxe T = 3 > 0 for all states y € X.

Converse: Let 7 be the unique positive invariant distribution of Markov chain X, such that 77, = .— >0

1
Hyy
for all states y € X. It follows that the Markov chain X is positive recurrent.

O

Corollary 1.5. An irreducible Markov chain on a finite state space X has a unique positive stationary distribution 7t.



Definition 1.6. An irreducible, aperiodic, positive recurrent Markov chain is called ergodic.

Remark 3. Additional remarks about the stationary distribution 7.

i- For a Markov chain with multiple positive recurrent communicating classes Cy,...,Cy, one can
find the positive equilibrium distribution for each class, and extend it to the entire state space X
denoting it by 7ty for class k € [m]. It is easy to check that any convex combination 77 = Y }" ; a7,
satisfies the global balance equation 77 = 7P, where wy > 0 for each k € [m] and Y} ; a; = 1. Hence,
a Markov chain with multiple positive recurrent classes have a convex set of invariant probability
measures, with the individual invariant distribution 71, for each positive recurrent class k € [m]
being the extreme points.

ii- Let p(0) = ey, that is let the initial state of the positive recurrent Markov chain be Xy = x. Then, we
know that

1 .1

my=— = lim —

k) o 1
fyy noon kzlpxy - nlgl;lo E]ExNy(n)'

That is, 7ty is limiting average of number of visits to state y € X.

iii_ If a positive recurrent Markov chain is aperiodic, then limiting probability of being in a state y is

its invariant probability, that is 77, = limy 0 p,(g,).

Theorem 1.7. For an ergodic Markov chain X with invariant distribution 7, and nth step distribution u(n), we
have limy, .o (1) = 7T in the total variation distance.

Proof. Consider independent time homogeneous Markov chains X : (2 — XZ+ and Y : QO — X%+ each with
transition matrix P. The initial state of Markov chain X is assumed to be X = x, whereas the Markov chain
Y is assumed to have an initial distribution 7t. It follows that Y is a stationary process, while X is not. In
particular,

ﬂy(”):Px{Xn:y}:ch;)r Pn{Yn:y}:ny.
Let T =inf{n € Z_ : X, = Y, } be the first time that two Markov chains meet, called the coupling time.

Finiteness: First, we show that the coupling time is almost surely finite. To this end, we define a a new
Markov chain on state space X x X with transition probability matrix Q such that g((x,w), (y,z)) =
PxyPwz for each pair of states (x,w), (y,z) € X x X. The n-step transition probabilities for this couples
Markov chain are given by

4" ((x,0), (y,2)) 2 pl) pl.

Ergodicity: Since the Markov chain X with transition probability matrix P is irreducible and aperi-
odic, for each x,y,w,z € X there exists an 1y € Z such that ") ((x,w), (y,z)) = p,(y’;) pz(;Z) > 0 for
all n > ng from a previous Lemma on aperiodicity. Hence, the irreducibility and aperiodicity of
this new product Markov chain follows.

Invariant: Itis easy to check that 6(x,w) = 71,7y, is the invariant distribution for this product Markov
chain, since 6(x,w) > 0 for each (x,w) € X x X, ¥ e 0(x,w) = 1, and for each (y,z) € X x X,

we have
Z 0(x,w)q((x,w),(y,z)) = Z TCx Pxy Z TlwPwz = TyTlz = 0(y,z).

x,weX xeX weX

Recurrence: This implies that the product Markov chain is positive recurrent, and each state (x,x) €
X x X is reachable with unit probability from any initial state (y,w) € X x X.

In particular, the coupling time is almost surely finite.



Coupled process: Second, we show that from the coupling time onwards, the evolution of two Markov
chains is identical in distribution. That is, for eachy € X and n € Z,

Px {Xpn=yn=>21t} =Py {Yn=yn=>r1}.

This follows from the strong Markov property for the joint process where T is stopping time for the
joint process ((Xy,Yyn) : n € Z) such that X = Y¢, and both marginals have the identical transition
matrix.

Limit: For any y € X, we can write the difference as

pgfyl) — ny‘ =[Pu{Xn=yn<t} =P {Yu=yn <t} <2P; (T >n).
Since the coupling time is almost surely finite for each initial state x, iy € X, wehave }_,cn Ps, s {T=n} =
1 and the tail-sum P;_, {7 > n} goes to zero as n grows large, and the result follows.

O

2 Computing invariant distribution

When the state space X is finite, one can find left eigenvector of probability transition matrix P for the
largest eigenvalue 1. This is the invariant distribution that satisfies the global balance equation 7w = 7t P.

Definition 2.1. Consider a time homogeneous positive recurrent Markov chain X : Q — X%+ with prob-
ability transition matrix P and invariant distribution 7w € M(X). For any two disjoint sets A,B C X, the
probability flux from set of nodes A to set of nodes B is defined as ®(A, B) = Yxe 4 Yye TxPay-

Remark 4. The probability flux from a single node x to single node y is denoted by ®(x,y) = 7Ty pxy.

Definition 2.2. For a time homogeneous Markov chain X : Q — X%+ with probability transition matrix
P represented as the weighted transition graph G = (X,E,w), a cut is defined as the partition (X1,X;) of
nodes.

Lemma 2.3. Probability flux balances across cuts.

Proof. A cut for the state space X is given by a partition (X1,X;). We show that ®(X1,X;) = ®(X,X;1). To
this see, we observe that by exchanging sums from the monotone convergence theorem, and exchanging x
and y as running variables, we can write the probability flux ®(X1,X,) as

Yoy Y b= ), (= ) by =) = Y ) = ),y — ), (M= ) Typyx)-

yeX] x¢Xq yeX] xeX, yeEX] xeXjyeX, yeX] xeXq yEX,
O
Corollary 2.4. For any states y € X, we have 1ty (1 — pyy) = 7ty Yxry Pyx = Lty TxPxy-
Proof. 1t follows from probability flux balancing across the cut ({y},{y}°). O



	Invariant Distribution
	Computing invariant distribution

