Lecture-23: Invariant Distribution

1 Invariant Distribution

Let $X : \Omega \to X^{\mathbb{Z}_+}$ be a time-homogeneous Markov chain with transition probability matrix $P : X \times X \to [0,1]$.

Definition 1.1. A probability distribution $\pi \in \mathcal{M}(X)$ is said to be **invariant distribution** for the Markov chain X if it satisfies the **global balance equation** $\pi = \pi P$.

Definition 1.2. When the initial distribution of a Markov chain is $\nu \in \mathcal{M}(\mathfrak{X})$, then the conditional probability is denoted by $P_{\nu} : \mathfrak{F} \to [0,1]$ defined by

$$P_{\nu}(A) \triangleq \sum_{x \in \mathcal{X}} \nu(x) P_{x}(A)$$
 for all events $A \in \mathcal{F}$.

Definition 1.3. For a Markov chain $X : \Omega \to \mathcal{X}^{\mathbb{Z}_+}$, we denote the distribution of random variable $X_n : \Omega \to \mathcal{X}$ by $\nu_n \in \mathcal{M}(\mathcal{X})$ for all $n \in \mathbb{Z}_+$. That is, $\nu_n(x) \triangleq P_{\nu_0} \{X_n = x\}$ for all $x \in \mathcal{X}$.

Remark 1. We observe that $\nu_n(x) = \sum_{z \in \mathcal{X}} \nu_0(z) (P^n)_{zx}$ for all $x \in \mathcal{X}$.

Remark 2. Facts about the invariant distribution π .

- i_ The global balance equation $\pi = \pi P$ is a matrix equation, that is we have a collection of $|\mathfrak{X}|$ equations $\pi_y = \sum_{x \in \mathfrak{X}} \pi_x p_{xy}$ for each $y \in \mathfrak{X}$.
- ii_ The invariant distribution π is left eigenvector of stochastic matrix P with the largest eigenvalue 1. The all ones vector is the right eigenvector of this stochastic matrix P for the eigenvalue 1.
- iii_ From the Chapman-Kolmogorov equation for initial probability vector π , we have $\pi = \pi P^n$ for $n \in \mathbb{N}$. That is, if $\nu_0 = \pi$, then $\nu_n = \pi$ for all $n \in \mathbb{Z}_+$.
- iv_ Resulting process with initial distribution π is stationary, and hence have shift-invariant finite dimensional distributions. For example, for any $k, n \in \mathbb{Z}_+$ and $x_0, \dots, x_n \in \mathcal{X}$, we have

$$P_{\pi}\left\{X_{0}=x_{0},\ldots,X_{n}=x_{n}\right\}=P_{\pi}\left\{X_{k}=x_{0},\ldots,X_{k+n}=x_{n}\right\}=\pi_{x_{0}}p_{x_{0}x_{1}}\ldots p_{x_{n-1}x_{n}}.$$

- v₋ For an irreducible Markov chain, if $\pi_x > 0$ for some $x \in \mathcal{X}$, then the entire invariant vector π is positive. To this end, we will show that $\pi_y > 0$ for all states $y \in \mathcal{X}$. Let $y \in \mathcal{X}$, then from the irreducibility of Markov chain, there exists an $m \in \mathbb{Z}_+$ such that $p_{xy}^{(m)} > 0$. Further, $\pi = \pi P^m$ and hence $\pi_y \geqslant \pi_x p_{xy}^{(m)} > 0$.
- vi_ Any scaled version of π satisfies the global balance equation. Therefore, for any invariant vector $\alpha \in \mathcal{X}^{\mathbb{R}_+}$ of a positive recurrent transition matrix P, the sum $\|\alpha\|_1 = \sum_{x \in \mathcal{X}} \alpha_x$ must be finite. We can normalize α and get an invariant probability measure $\pi = \frac{\alpha}{\|\alpha\|_1}$.

Theorem 1.4. An irreducible Markov chain with transition probability matrix $P: \mathfrak{X} \times \mathfrak{X} \to [0,1]$ is positive recurrent iff there exists a unique invariant probability measure $\pi \in \mathcal{M}(\mathfrak{X})$ that satisfies global balance equation $\pi = \pi P$ and $\pi_x = \frac{1}{\mu_{xx}} > 0$ for all $x \in \mathfrak{X}$.

Proof. Consider an irreducible Markov chain $X: \Omega \to \mathfrak{X}^{\mathbb{Z}_+}$ with transition probability matrix P. We will first show that positive recurrence of X implies the existence of a positive invariant distribution π and its uniqueness. Then we will show that the existence of a unique positive invariant distribution π implies positive recurrence of X.

Implication: For Markov chain X, let the initial state be $X_0 = x$. Recall that the number of visits to state $y \in \mathcal{X}$ in the first n steps of the Markov chain X is denoted by $N_y(n) = \sum_{k=1}^n \mathbb{1}_{\{X_k = y\}}$. It follows that $\sum_{y \in \mathcal{X}} N_y(n) = n$ for each $n \in \mathbb{N}$. Let $H_x \triangleq \tau_X^{\{x\},1}$ be the first recurrence time to state $x \in \mathcal{X}$, then we have $N_x(H_x) = 1$ and $\sum_{y \in \mathcal{X}} N_y(H_x) = H_x$.

Existence: We define a vector $v \in \mathbb{R}^{\mathcal{X}}$ by $v_y \triangleq \mathbb{E}_x[N_y(H_x)]$ for each $y \in \mathcal{X}$. We observe that $v_y \geqslant 0$ for each state $y \in \mathcal{X}$. In particular, $v_x = 1$. Since X is positive recurrent, we get that $\sum_{y \in \mathcal{X}} v_y = \mathbb{E}_x H_x = \mu_{xx} < \infty$. We will show that the vector v satisfies the global balance equation v = vP. To see this, we first define $\lambda_{xy}^{(n)} \triangleq P_x \{X_n = y, n \leqslant H_x\}$ for all $n \in \mathbb{N}$ and states $x, y \in \mathcal{X}$. We observe that $\lambda_{xy}^{(1)} = p_{xy}$ for each $y \in \mathcal{X}$. Next, we observe from the monotone convergence theorem, that

$$v_{y} = \mathbb{E}_{x} N_{y}(H_{x}) = \mathbb{E}_{x} \sum_{n \in \mathbb{N}} \mathbb{1}_{\{X_{n} = y, n \leqslant H_{x}\}} = \sum_{n \in \mathbb{N}} P_{x} \{X_{n} = y, n \leqslant H_{x}\} = \sum_{n \in \mathbb{N}} \lambda_{xy}^{(n)}. \tag{1}$$

For $n \ge 2$, partitioning the event $\{X_n = y, n \le H_x\}$ by the events $(\{X_{n-1} = z\} : z \in X \setminus \{x\})$, the countable additivity of conditional probability for disjoint events, and the definition of conditional probability, we get

$$\lambda_{xy}^{(n)} = \sum_{z \neq x} P(\{X_n = y\} \mid \{X_{n-1} = z, n \leqslant H_x, X_0 = x\}) P_x \{X_{n-1} = z, n \leqslant H_x\}.$$

Recall that since H_x is adapted to natural filtration \mathcal{F}_{\bullet} of Markov chain X, we have $\{n \leqslant H_x, X_0 = x\} = \{X_0 = x\} \cap \{H_x > n-1\}^c \in \mathcal{F}_{n-1}$. Together with the Markov property of X and the fact that $\{X_{n-1} = z, n \leqslant H_x\} = \{X_{n-1} = z, n-1 \leqslant H_x\}$, we obtain

$$\lambda_{xy}^{(n)} = \sum_{z \neq x} P(\{X_n = y\} \mid \{X_{n-1} = z\}) P_x \{X_{n-1} = z, n-1 \leqslant H_x\} = \sum_{z \neq x} \lambda_{xz}^{(n-1)} p_{zy}.$$
 (2)

Substituting the expression for $\lambda_{xy}^{(n)}$ in (2) into the expression for $v_y = \sum_{n \in \mathbb{N}} \lambda_{xy}^{(n)}$ in (1) and using the fact that $v_x = 1$, we obtain

$$v_y = p_{xy} + \sum_{n \geqslant 2} \sum_{z \neq x} \lambda_{xz}^{(n-1)} p_{zy} = v_x p_{xy} + \sum_{z \neq x} v_z p_{zy} = \sum_{x \in \mathcal{X}} v_x p_{xy}.$$

Since v has a finite sum, it follows that $\pi \triangleq \frac{v}{\sum_{x \in \mathcal{X}} v_x}$ is an invariant distribution for the Markov chain X with the transition matrix P. In addition, we have $\pi_X = \frac{v_X}{\sum_{y \in \mathcal{X}} v_y} = \frac{1}{\mu_{xx}} > 0$.

Uniqueness: Next, we show that this is a unique invariant measure independent of the initial state x, and hence $\pi_y = \frac{1}{\mu_{yy}} > 0$ for all $y \in \mathcal{X}$. For uniqueness, we observe from the Chapman-Kolmogorov equations and invariance of π that $\pi = \frac{1}{n}\pi(P+P^2+\cdots+P^n)$. Hence, $\pi_y = \sum_{x \in \mathcal{X}} \pi_x \frac{1}{n} \sum_{k=1}^n p_{xy}^{(k)}$ for all states $y \in \mathcal{X}$. Taking limit $n \to \infty$ on both sides, and exchanging limit and summation on right hand side using bounded convergence theorem for summable series π , we get $\pi_y = \frac{1}{\mu_{yy}} \sum_{x \in \mathcal{X}} \pi_x = \frac{1}{\mu_{yy}} > 0$ for all states $y \in \mathcal{X}$.

Converse: Let π be the unique positive invariant distribution of Markov chain X, such that $\pi_y = \frac{1}{\mu_{yy}} > 0$ for all states $y \in \mathcal{X}$. It follows that the Markov chain X is positive recurrent.

Corollary 1.5. An irreducible Markov chain on a finite state space X has a unique positive stationary distribution π .

Definition 1.6. An irreducible, aperiodic, positive recurrent Markov chain is called **ergodic**.

Remark 3. Additional remarks about the stationary distribution π .

- i_ For a Markov chain with multiple positive recurrent communicating classes $\mathcal{C}_1,\ldots,\mathcal{C}_m$, one can find the positive equilibrium distribution for each class, and extend it to the entire state space \mathcal{X} denoting it by π_k for class $k \in [m]$. It is easy to check that any convex combination $\pi = \sum_{k=1}^m \alpha_k \pi_k$ satisfies the global balance equation $\pi = \pi P$, where $\alpha_k \geqslant 0$ for each $k \in [m]$ and $\sum_{k=1}^m \alpha_k = 1$. Hence, a Markov chain with multiple positive recurrent classes have a convex set of invariant probability measures, with the individual invariant distribution π_k for each positive recurrent class $k \in [m]$ being the extreme points.
- ii_ Let $\mu(0) = e_x$, that is let the initial state of the positive recurrent Markov chain be $X_0 = x$. Then, we know that

$$\pi_y = \frac{1}{\mu_{yy}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n p_{xy}^{(k)} = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_x N_y(n).$$

That is, π_y is limiting average of number of visits to state $y \in \mathcal{X}$.

iii_ If a positive recurrent Markov chain is aperiodic, then limiting probability of being in a state y is its invariant probability, that is $\pi_y = \lim_{n \to \infty} p_{xy}^{(n)}$.

Theorem 1.7. For an ergodic Markov chain X with invariant distribution π , and nth step distribution $\mu(n)$, we have $\lim_{n\to\infty} \mu(n) = \pi$ in the total variation distance.

Proof. Consider independent time homogeneous Markov chains $X : \Omega \to \mathcal{X}^{\mathbb{Z}_+}$ and $Y : \Omega \to \mathcal{X}^{\mathbb{Z}_+}$ each with transition matrix P. The initial state of Markov chain X is assumed to be $X_0 = x$, whereas the Markov chain Y is assumed to have an initial distribution π . It follows that Y is a stationary process, while X is not. In particular,

$$\mu_{y}(n) = P_{x} \{X_{n} = y\} = p_{xy}^{(n)}, \qquad P_{\pi} \{Y_{n} = y\} = \pi_{y}.$$

Let $\tau = \inf\{n \in \mathbb{Z}_+ : X_n = Y_n\}$ be the first time that two Markov chains meet, called the **coupling time**.

Finiteness: First, we show that the coupling time is almost surely finite. To this end, we define a a new Markov chain on state space $\mathcal{X} \times \mathcal{X}$ with transition probability matrix Q such that $q((x,w),(y,z)) = p_{xy}p_{wz}$ for each pair of states $(x,w),(y,z) \in \mathcal{X} \times \mathcal{X}$. The n-step transition probabilities for this couples Markov chain are given by

$$q^{(n)}((x,w),(y,z)) \triangleq p_{xy}^{(n)} p_{wz}^{(n)}.$$

Ergodicity: Since the Markov chain X with transition probability matrix P is irreducible and aperiodic, for each $x,y,w,z\in \mathcal{X}$ there exists an $n_0\in \mathbb{Z}_+$ such that $q^{(n)}((x,w),(y,z))=p_{xy}^{(n)}p_{wz}^{(n)}>0$ for all $n\geqslant n_0$ from a previous Lemma on aperiodicity. Hence, the irreducibility and aperiodicity of this new **product** Markov chain follows.

Invariant: It is easy to check that $\theta(x,w) = \pi_x \pi_w$ is the invariant distribution for this product Markov chain, since $\theta(x,w) > 0$ for each $(x,w) \in \mathcal{X} \times \mathcal{X}$, $\sum_{x,w \in \mathcal{X}} \theta(x,w) = 1$, and for each $(y,z) \in \mathcal{X} \times \mathcal{X}$, we have

$$\sum_{x,w\in\mathcal{X}}\theta(x,w)q((x,w),(y,z))=\sum_{x\in\mathcal{X}}\pi_xp_{xy}\sum_{w\in\mathcal{X}}\pi_wp_{wz}=\pi_y\pi_z=\theta(y,z).$$

Recurrence: This implies that the product Markov chain is positive recurrent, and each state $(x,x) \in \mathcal{X} \times \mathcal{X}$ is reachable with unit probability from any initial state $(y,w) \in \mathcal{X} \times \mathcal{X}$.

In particular, the coupling time is almost surely finite.

Coupled process: Second, we show that from the coupling time onwards, the evolution of two Markov chains is identical in distribution. That is, for each $y \in X$ and $n \in \mathbb{Z}_+$,

$$P_{X_{\tau}}\left\{X_{n}=y, n \geqslant \tau\right\} = P_{Y_{\tau}}\left\{Y_{n}=y, n \geqslant \tau\right\}.$$

This follows from the strong Markov property for the joint process where τ is stopping time for the joint process $((X_n, Y_n) : n \in \mathbb{Z}_+)$ such that $X_\tau = Y_\tau$, and both marginals have the identical transition matrix.

Limit: For any $y \in \mathcal{X}$, we can write the difference as

$$\left| p_{xy}^{(n)} - \pi_y \right| = \left| P_x \left\{ X_n = y, n < \tau \right\} - P_\pi \left\{ Y_n = y, n < \tau \right\} \right| \le 2P_{\delta_x, \pi}(\tau > n).$$

Since the coupling time is almost surely finite for each initial state $x, y \in \mathcal{X}$, we have $\sum_{n \in \mathbb{N}} P_{\delta_x, \pi} \{ \tau = n \} = 1$ and the tail-sum $P_{\delta_x, \pi} \{ \tau > n \}$ goes to zero as n grows large, and the result follows.

2 Computing invariant distribution

When the state space \mathcal{X} is finite, one can find left eigenvector of probability transition matrix P for the largest eigenvalue 1. This is the invariant distribution that satisfies the global balance equation $\pi = \pi P$.

Definition 2.1. Consider a time homogeneous positive recurrent Markov chain $X : \Omega \to \mathcal{X}^{\mathbb{Z}_+}$ with probability transition matrix P and invariant distribution $\pi \in \mathcal{M}(\mathcal{X})$. For any two disjoint sets $A, B \subseteq \mathcal{X}$, the probability flux from set of nodes A to set of nodes B is defined as $\Phi(A, B) = \sum_{x \in A} \sum_{y \in B} \pi_x p_{xy}$.

Remark 4. The probability flux from a single node x to single node y is denoted by $\Phi(x,y) = \pi_x p_{xy}$.

Definition 2.2. For a time homogeneous Markov chain $X : \Omega \to \mathcal{X}^{\mathbb{Z}_+}$ with probability transition matrix P represented as the weighted transition graph $G = (\mathcal{X}, E, w)$, a **cut** is defined as the partition $(\mathcal{X}_1, \mathcal{X}_2)$ of nodes.

Lemma 2.3. Probability flux balances across cuts.

Proof. A cut for the state space \mathcal{X} is given by a partition $(\mathcal{X}_1, \mathcal{X}_2)$. We show that $\Phi(\mathcal{X}_1, \mathcal{X}_2) = \Phi(\mathcal{X}_2, \mathcal{X}_1)$. To this see, we observe that by exchanging sums from the monotone convergence theorem, and exchanging x and y as running variables, we can write the probability flux $\Phi(\mathcal{X}_1, \mathcal{X}_2)$ as

$$\sum_{y \in \mathcal{X}_1} \pi_y \sum_{x \notin \mathcal{X}_1} p_{yx} = \sum_{y \in \mathcal{X}_1} \pi_y (1 - \sum_{x \in \mathcal{X}_1} p_{yx}) = \sum_{y \in \mathcal{X}_1} \pi_y - \sum_{x \in \mathcal{X}_1} \sum_{y \in \mathcal{X}_1} \pi_y p_{yx} = \sum_{y \in \mathcal{X}_1} \pi_y - \sum_{x \in \mathcal{X}_1} (\pi_x - \sum_{y \notin \mathcal{X}_1} \pi_y p_{yx}).$$

Corollary 2.4. For any states $y \in X$, we have $\pi_y(1 - p_{yy}) = \pi_y \sum_{x \neq y} p_{yx} = \sum_{x \neq y} \pi_x p_{xy}$.

Proof. It follows from probability flux balancing across the cut $(\{y\}, \{y\}^c)$.