
Lecture-23: Invariant Distribution

1 Invariant Distribution

Let X : Ω →XZ+ be a time-homogeneous Markov chain with transition probability matrix P : X×X→ [0,1].

Definition 1.1. A probability distribution π ∈ M(X) is said to be invariant distribution for the Markov
chain X if it satisfies the global balance equation π = πP.

Definition 1.2. When the initial distribution of a Markov chain is ν ∈M(X), then the conditional probabil-
ity is denoted by Pν : F → [0,1] defined by

Pν(A)≜ ∑
x∈X

ν(x)Px(A) for all events A ∈ F.

Definition 1.3. For a Markov chain X : Ω →XZ+ , we denote the distribution of random variable Xn : Ω →X

by νn ∈M(X) for all n ∈ Z+. That is, νn(x)≜ Pν0 {Xn = x} for all x ∈ X.

Remark 1. We observe that νn(x) = ∑z∈X ν0(z)(Pn)zx for all x ∈ X.

Remark 2. Facts about the invariant distribution π.

i The global balance equation π = πP is a matrix equation, that is we have a collection of |X| equa-
tions πy = ∑x∈X πx pxy for each y ∈ X.

ii The invariant distribution π is left eigenvector of stochastic matrix P with the largest eigenvalue 1.
The all ones vector is the right eigenvector of this stochastic matrix P for the eigenvalue 1.

iii From the Chapman-Kolmogorov equation for initial probability vector π, we have π = πPn for
n ∈ N. That is, if ν0 = π, then νn = π for all n ∈ Z+.

iv Resulting process with initial distribution π is stationary, and hence have shift-invariant finite
dimensional distributions. For example, for any k,n ∈ Z+ and x0, . . . , xn ∈ X, we have

Pπ {X0 = x0, . . . , Xn = xn} = Pπ {Xk = x0, . . . , Xk+n = xn} = πx0 px0x1 . . . pxn−1xn .

v For an irreducible Markov chain, if πx > 0 for some x ∈ X, then the entire invariant vector π is
positive. To this end, we will show that πy > 0 for all states y ∈ X. Let y ∈ X, then from the

irreducibility of Markov chain, there exists an m ∈ Z+ such that p(m)
xy > 0. Further, π = πPm and

hence πy ⩾ πx p(m)
xy > 0.

vi Any scaled version of π satisfies the global balance equation. Therefore, for any invariant vector
α ∈ XR+ of a positive recurrent transition matrix P, the sum ∥α∥1 = ∑x∈X αx must be finite. We can
normalize α and get an invariant probability measure π = α

∥α∥1
.

Theorem 1.4. An irreducible Markov chain with transition probability matrix P :X×X→ [0,1] is positive recurrent
iff there exists a unique invariant probability measure π ∈M(X) that satisfies global balance equation π = πP and
πx =

1
µxx

> 0 for all x ∈ X.
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Proof. Consider an irreducible Markov chain X : Ω → XZ+ with transition probability matrix P. We will
first show that positive recurrence of X implies the existence of a positive invariant distribution π and its
uniqueness. Then we will show that the existence of a unique positive invariant distribution π implies
positive recurrence of X.

Implication: For Markov chain X, let the initial state be X0 = x. Recall that the number of visits to state
y ∈ X in the first n steps of the Markov chain X is denoted by Ny(n) = ∑n

k=11{Xk=y}. It follows that

∑y∈X Ny(n) = n for each n ∈ N. Let Hx ≜ τ
{x},1
X be the first recurrence time to state x ∈ X, then we

have Nx(Hx) = 1 and ∑y∈X Ny(Hx) = Hx.

Existence: We define a vector v ∈ RX by vy ≜ Ex[Ny(Hx)] for each y ∈ X. We observe that vy ⩾ 0
for each state y ∈ X. In particular, vx = 1. Since X is positive recurrent, we get that ∑y∈X vy =
Ex Hx = µxx < ∞. We will show that the vector v satisfies the global balance equation v = vP. To
see this, we first define λ

(n)
xy ≜ Px {Xn = y,n ⩽ Hx} for all n ∈ N and states x,y ∈ X. We observe

that λ
(1)
xy = pxy for each y ∈ X. Next, we observe from the monotone convergence theorem, that

vy = Ex Ny(Hx) = Ex ∑
n∈N

1{Xn=y,n⩽Hx} = ∑
n∈N

Px {Xn = y,n ⩽ Hx} = ∑
n∈N

λ
(n)
xy . (1)

For n ⩾ 2, partitioning the event {Xn = y,n ⩽ Hx} by the events ({Xn−1 = z} : z ∈ X \ {x}), the
countable additivity of conditional probability for disjoint events, and the definition of condi-
tional probability, we get

λ
(n)
xy = ∑

z ̸=x
P({Xn = y}

∣∣ {Xn−1 = z,n ⩽ Hx, X0 = x})Px {Xn−1 = z,n ⩽ Hx} .

Recall that since Hx is adapted to natural filtration F• of Markov chain X, we have {n ⩽ Hx, X0 = x}=
{X0 = x} ∩ {Hx > n − 1}c ∈ Fn−1. Together with the Markov property of X and the fact that
{Xn−1 = z,n ⩽ Hx} = {Xn−1 = z,n − 1 ⩽ Hx}, we obtain

λ
(n)
xy = ∑

z ̸=x
P({Xn = y}

∣∣ {Xn−1 = z})Px {Xn−1 = z,n − 1 ⩽ Hx} = ∑
z ̸=x

λ
(n−1)
xz pzy. (2)

Substituting the expression for λ
(n)
xy in (2) into the expression for vy = ∑n∈N λ

(n)
xy in (1) and using

the fact that vx = 1, we obtain

vy = pxy + ∑
n⩾2

∑
z ̸=x

λ
(n−1)
xz pzy = vx pxy + ∑

z ̸=x
vz pzy = ∑

x∈X
vx pxy.

Since v has a finite sum, it follows that π ≜ v
∑x∈X vx

is an invariant distribution for the Markov

chain X with the transition matrix P. In addition, we have πx =
vx

∑y∈X vy
= 1

µxx
> 0.

Uniqueness: Next, we show that this is a unique invariant measure independent of the initial state x,
and hence πy =

1
µyy

> 0 for all y ∈X. For uniqueness, we observe from the Chapman-Kolmogorov

equations and invariance of π that π = 1
n π(P + P2 + · · ·+ Pn). Hence, πy = ∑x∈X πx

1
n ∑n

k=1 p(k)xy
for all states y ∈ X. Taking limit n → ∞ on both sides, and exchanging limit and summation
on right hand side using bounded convergence theorem for summable series π, we get πy =

1
µyy

∑x∈X πx =
1

µyy
> 0 for all states y ∈ X.

Converse: Let π be the unique positive invariant distribution of Markov chain X, such that πy = 1
µyy

> 0
for all states y ∈ X. It follows that the Markov chain X is positive recurrent.

Corollary 1.5. An irreducible Markov chain on a finite state space X has a unique positive stationary distribution π.
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Definition 1.6. An irreducible, aperiodic, positive recurrent Markov chain is called ergodic.

Remark 3. Additional remarks about the stationary distribution π.

i For a Markov chain with multiple positive recurrent communicating classes C1, . . . ,Cm, one can
find the positive equilibrium distribution for each class, and extend it to the entire state space X

denoting it by πk for class k ∈ [m]. It is easy to check that any convex combination π = ∑m
k=1 αkπk

satisfies the global balance equation π = πP, where αk ⩾ 0 for each k ∈ [m] and ∑m
k=1 αk = 1. Hence,

a Markov chain with multiple positive recurrent classes have a convex set of invariant probability
measures, with the individual invariant distribution πk for each positive recurrent class k ∈ [m]
being the extreme points.

ii Let µ(0) = ex, that is let the initial state of the positive recurrent Markov chain be X0 = x. Then, we
know that

πy =
1

µyy
= lim

n→∞

1
n

n

∑
k=1

p(k)xy = lim
n→∞

1
n

Ex Ny(n).

That is, πy is limiting average of number of visits to state y ∈ X.

iii If a positive recurrent Markov chain is aperiodic, then limiting probability of being in a state y is
its invariant probability, that is πy = limn→∞ p(n)xy .

Theorem 1.7. For an ergodic Markov chain X with invariant distribution π, and nth step distribution µ(n), we
have limn→∞ µ(n) = π in the total variation distance.

Proof. Consider independent time homogeneous Markov chains X : Ω → XZ+ and Y : Ω → XZ+ each with
transition matrix P. The initial state of Markov chain X is assumed to be X0 = x, whereas the Markov chain
Y is assumed to have an initial distribution π. It follows that Y is a stationary process, while X is not. In
particular,

µy(n) = Px {Xn = y} = p(n)xy , Pπ {Yn = y} = πy.

Let τ = inf{n ∈ Z+ : Xn = Yn} be the first time that two Markov chains meet, called the coupling time.

Finiteness: First, we show that the coupling time is almost surely finite. To this end, we define a a new
Markov chain on state space X× X with transition probability matrix Q such that q((x,w), (y,z)) =
pxy pwz for each pair of states (x,w), (y,z) ∈ X×X. The n-step transition probabilities for this couples
Markov chain are given by

q(n)((x,w), (y,z))≜ p(n)xy p(n)wz .

Ergodicity: Since the Markov chain X with transition probability matrix P is irreducible and aperi-
odic, for each x,y,w,z ∈ X there exists an n0 ∈ Z+ such that q(n)((x,w), (y,z)) = p(n)xy p(n)wz > 0 for
all n ⩾ n0 from a previous Lemma on aperiodicity. Hence, the irreducibility and aperiodicity of
this new product Markov chain follows.

Invariant: It is easy to check that θ(x,w) = πxπw is the invariant distribution for this product Markov
chain, since θ(x,w) > 0 for each (x,w) ∈ X× X, ∑x,w∈X θ(x,w) = 1, and for each (y,z) ∈ X× X,
we have

∑
x,w∈X

θ(x,w)q((x,w), (y,z)) = ∑
x∈X

πx pxy ∑
w∈X

πw pwz = πyπz = θ(y,z).

Recurrence: This implies that the product Markov chain is positive recurrent, and each state (x, x) ∈
X×X is reachable with unit probability from any initial state (y,w) ∈ X×X.

In particular, the coupling time is almost surely finite.

3



Coupled process: Second, we show that from the coupling time onwards, the evolution of two Markov
chains is identical in distribution. That is, for each y ∈ X and n ∈ Z+,

PXτ {Xn = y,n ⩾ τ} = PYτ {Yn = y,n ⩾ τ} .

This follows from the strong Markov property for the joint process where τ is stopping time for the
joint process ((Xn,Yn) : n ∈ Z+) such that Xτ = Yτ , and both marginals have the identical transition
matrix.

Limit: For any y ∈ X, we can write the difference as∣∣∣p(n)xy − πy

∣∣∣ = |Px {Xn = y,n < τ} − Pπ {Yn = y,n < τ}|⩽ 2Pδx ,π(τ > n).

Since the coupling time is almost surely finite for each initial state x,y∈X, we have ∑n∈N Pδx ,π {τ = n}=
1 and the tail-sum Pδx ,π {τ > n} goes to zero as n grows large, and the result follows.

2 Computing invariant distribution

When the state space X is finite, one can find left eigenvector of probability transition matrix P for the
largest eigenvalue 1. This is the invariant distribution that satisfies the global balance equation π = πP.

Definition 2.1. Consider a time homogeneous positive recurrent Markov chain X : Ω → XZ+ with prob-
ability transition matrix P and invariant distribution π ∈ M(X). For any two disjoint sets A, B ⊆ X, the
probability flux from set of nodes A to set of nodes B is defined as Φ(A, B) = ∑x∈A ∑y∈B πx pxy.

Remark 4. The probability flux from a single node x to single node y is denoted by Φ(x,y) = πx pxy.

Definition 2.2. For a time homogeneous Markov chain X : Ω → XZ+ with probability transition matrix
P represented as the weighted transition graph G = (X, E,w), a cut is defined as the partition (X1,X2) of
nodes.

Lemma 2.3. Probability flux balances across cuts.

Proof. A cut for the state space X is given by a partition (X1,X2). We show that Φ(X1,X2) = Φ(X2,X1). To
this see, we observe that by exchanging sums from the monotone convergence theorem, and exchanging x
and y as running variables, we can write the probability flux Φ(X1,X2) as

∑
y∈X1

πy ∑
x/∈X1

pyx = ∑
y∈X1

πy(1 − ∑
x∈X1

pyx) = ∑
y∈X1

πy − ∑
x∈X1

∑
y∈X1

πy pyx = ∑
y∈X1

πy − ∑
x∈X1

(πx − ∑
y/∈X1

πy pyx).

Corollary 2.4. For any states y ∈ X, we have πy(1 − pyy) = πy ∑x ̸=y pyx = ∑x ̸=y πx pxy.

Proof. It follows from probability flux balancing across the cut ({y} ,{y}c).
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