Lecture-24: Poisson Point Processes

1 Simple point processes

Consider the d-dimensional Euclidean space R?. The collection of Borel measurable subsets B(RR?) of the
above Euclidean space is generated by sets B(x) = { yeR 1y < xi} for x € RY.

Definition 1.1. A simple point process is a random countable collection of distinct points S : QO — XN, such
that the distance ||Sy|| — oo as n — .

Remark 1. Since S is a simple point process, each point S, is unique. Therefore, we can identify S as a
random set of points in X and S N A is the random set of points in A.

Remark 2. For any simple point process S, we have P({S, =S, forany n #m}) = 0 and |S N A] is finite
almost surely for any bounded set A € B(X).

Example 1.2 (Simple point process on the half-line). We can simplify this definition for d =1. When
X =R, one can order the points of the process S : O — RY to get ordered process S : QO — RN, such that

Sy = S(n) is the nth order statistics of S. That is, 5 £ 0, and Sn) = inf{Sk >Smo1) k€ ]N}. such that
S1) <S@) <+ <SS <...,andlimen S(,;) = . We will call this an arrival process.

Definition 1.3. Corresponding to a point process S : QO — XN, we denote the number of points in a set
A € B(X) by
N(A)£|SNA|= ) 14(Sn), where we have N(®) = 0.
nelN

The resulting process N : () — 7., is called a counting process for the point process S : Q — XN,
Remark 3. Let A € B(X)* be abounded partition of B € B(X). From the disjointness of (Ay,..., A;), we have

k k
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Definition 1.4. A counting process is simple if the underlying point process is simple.
Remark 4. For a simple counting process N, we have N({x}) <1 almost surely for all x € X.
Remark 5. Let N: Q — Z.. 2(%) be the counting process for the point process S : Q0 — XN.

i- Note that the point process S and the counting process N carry the same information.

ii_ The distribution of point process S is completely characterized by the finite dimensional distributions
of random vectors (N(A1),...,N(Ay)) for any bounded sets Ay, ..., Ay € B(X) and finite k € IN.

Example 1.5 (Simple point process on the half-line). Since the Borel measurable sets B(IR 1) are generated

by half-open intervals {(0,]:t € R} }, we denote the counting process by N : Q — Z, R+, where N; £
N(0,t] = Ynen Is,e(0,) is the number of points in the half—open interval (0,t]. For s < f, the number of

points in interval (s,t] is N(s,t] = N(0,¢] — N(0,s] = Ny — N;.



Theorem 1.6 (Rényi). Distribution of a simple point process S : Q — XN on a locally compact second countable
space X is completely determined by void probabilities (P{N(A) =0} : A € B(X)).

Proof. It suffices to show that the finite dimensional distributions of S on locally compact sets are character-
ized by void probabilities.

Step 1: We will show this by induction on the number of points k in a bounded set A € B. Let Ay,..., Ay, B €
B(X) locally compact, then we will show that u; = P(N_; {N(A;) >0} N {N(B) =0}) can be com-
puted from void probabilities. From k = 1, we have

P{N(A;) >0,N(B)=0} =P{N(B) =0} —P{N(BUA;) =0}.
The induction can be proved by the recursive relation

up = PN} {N(A}) > 0} N {N(B) = 0}) — P(AK= {N(A;) > 0} 1 {N(Ac U B) =0}).
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Step 2: For any locally compact set B € B(X), there exists a sequence of nested partitions B, = (By:j€

[Jn]) that eventually separates the points in SN B as n — co. We define the number of subsets of
A

partition (B, ; : j € [Ju]) that consist of at least one point in SN B, as H,(B) = Z]I”:l I{N(B,,,j)>0} where
H,(B) 1 N(B) almost surely.

Step 3: We next show that for all locally compact sets By,...,Bx € B(X) and ji,...,jx € N, the probability
P(Nk_, {Hx(B;) = j;}) can be expressed in terms of void probabilities. We observe that

P(Nk; {Ha(B) = ji}) = )3 P((Niy Njer, {N(BL)) > 0} {N(Uyp i 1Bh) =0} ).
Tlr-ankQUn]:‘Tl‘:flr---/‘Tk‘:]'k

This can be expressed in terms of void probabilities by Step 1.

Step 4: For a simple point process, we have the following almost sure limit lim, N, {H,(B;) = j;} =
MK, {N(B;) = ji}. The result follows from the continuity of probability.

O
Remark 6. Recall that |A| = [ _, dx is the volume of the set A € B(R¥) and for any such A.

Definition 1.7. The intensity measure A : B(X) — R is defined for each bounded set A € X as its scaled
volume in terms of the intensity density A : R — R, as

A(A) & /xGA/\(x)dx.

If the intensity density A(x) = A for all x € RY, then A(A) = A|A|. In particular for partition Ay, ..., Ay for
aset B, we have A(B) = Y| A(4)).

2 Poisson point process

Definition 2.1. A non-negative integer valued random variable N : () — Z_ is called Poisson if for some
constant A > 0, we have
/\n
_ _ A
P{N=n}=e prE
Remark 7. It is easy to check that EN = Var[N] = A. Furthermore, the moment generating function My, =
EetN = eM'~1) exists for all € R.

Corollary 2.2. A simple counting process N : (2 — wac) has Poisson marginal distribution with intensity measure

A B(X) = Ry if and only if void probabilities are exponential with the same intensity measure A.



Proof. Itis clear that if the marginal distribution of the counting process N is Poisson with intensity measure
A, then the void probability P{N(A) = 0} = ¢~*4) is exponential for any bounded set A € B(X).

Conversely, we assume that the void probabilities are exponentially distributed with intensity mea-
sure A. It follows from the linearity of intensity measure that for any finite, bounded, and disjoint sets
Bi,...,Br € B(X), we have

P(N_  {N(B;) =0})=P {N(u{.;lBl-) = o} = e AULB) = ﬁeA(Bf) = ﬁP{N(Bi) =0}.

That is, the Bernoulli random vector (1;y(p,)—o} : € [k]) is independent for any finite k € N and bounded

disjoint B(X) measurable sets By, ..., By. Next we consider a set B € B(X) and a partition B, = (B, ;: j € [Ju])

of B such that A(B,;) = AB) for all j € [Ju]- It follows that H,(B) = 2]]-”:1 H{N(B,,j)>0} is the sum of J,

]H
i.id. Bernoulli random variables with success probability p, £ 1 — e=A(E)

distribution with parameters (], pn). Therefore,

/Jn . and hence has a Binomial

eiA(B) n m _ n! m

Recall that H, (B) T N(B) as n — oo in the proof of Rényi’s Theorem, and lim,, e [ = o0 and lim, e ‘Bn,j‘ =
0. Thus, limy e 22+ (eAB)/Jn — 1) — A(B)™. Taking limit # — oo on both sides of the above equation,

(Jn—m)!
we get the result. O

Definition 2.3. A counting process N : () — Zf(x) has the completely independence property, if for any

collection of finite disjoint and bounded sets Ay, ..., Ay € B(X), the vector (N(A1),...,N(Ay)) : Q — ZK is
independent. That is,

k k
P (ﬂ {N(A) = ni}> :HP{N(A,») =}, nezk.
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Definition 2.4. A simple point process S : QO — XN is Poisson point process, if the associated counting

process N : () — Zf(x) has complete independence property and the marginal distributions are Poisson.

Definition 2.5. The intensity measure A : B(X) — R of Poisson process S is defined by A(A) = EN(A)
for all bounded A € B(X).

Remark 8. Recall that for any partition A € B(X)¥ of a bounded set B € B(X), we have N(B) = Y5_, N(A;)
and therefore it follows from the linearity of expectations that A(B) = EN(B) = Y¥_| EN(A;) =YX, A(4)).
Thus, this is a valid intensity measure.

Remark 9. For a Poisson process with intensity measure A, it follows from the definition that for any finite
k € Z., and bounded mutually disjoint sets Ay,..., Ay € B(X), we have

P(nf {N(A) =n}) = li (eA(A»A(;‘ﬁV”) , nezk.

Definition 2.6. If the intensity measure A of a Poisson process S satisfies A(A) = A|A| for all bounded
A € B(X), then we call S a homogeneous Poisson point process and A is its intensity.

3 Equivalent characterizations

Theorem 3.1 (Equivalences). Following are equivalent for a simple counting process N : Q0 — Z B,

i- Process N is Poisson with locally finite intensity measure A.



ii_ For each bounded A € B(X), we have P{N(A) =0} = e~ A4),

iti_ For each bounded A € B(X), the number of points N(A) is a Poisson with parameter A(A).

iv_ Process N has the completely independence property, and EN(A) = A(A) for all bounded sets A € B(X).
Proof. We will show thati. = ii. = iii. = v. = i_.

i = ii_ It follows from the definition of Poisson point processes and definition of Poisson random vari-
ables.

ii — iii_. From Corollary we know that if void probabilities are exponential, then the marginal distri-
butions are Poisson.

iii => iv_ We will show this in two steps.

Mean: Since the distribution of random variable N(A) is Poisson, it has mean EN(A) = A(A).
CIP: Consider a partition A € B¥ for a bounded set B € B(X), then A(B) = A(A{) + --- + A(Ay).
Consider all partitions n € Z’i of a non-negative integer m € Z ., to write
P{N(B):m}: 2 P{N(Al):nl,...,N(Ak):nk}.
ny+-+n=m

Using the definition of Poisson distribution, we can write the LHS of the above equation as

PIN(B) = m} = e MBI AB" ﬁe—A(Ai)M.

m! Pl m!

Since the expansion of (a1 + -+ + )" = L, 1 =m (i Tnk)]—[;‘:l a;’, we get

ol O\ e A (A [ A A4
PN == B (" Tt A= (1 .

C e tng=n \rees nyt++me=m \i= ;!
Equating each term in the summation, we get P{N (A1) = ny,...,N(Ag) = m} =T, P{N(A;) = n;}.

iv = i_ From Corollary if the void probability is exponential with intensity measure A, then the
marginal distribution if Poisson with the same intensity measure. We define f : B(X) — (—o0,0]
by f(A) 2 InP{N(A) =0} for all bounded A € B(X). Then, we observe that for any partition
(Aq,...,Ay) of A, we have f(UE_|A;) = InP{N(A) =0} = In]T-_, P{N(A;) =0} = Y5, f(A). Tt
follows that —f : B(X) — R is an intensity measure, and P{N(A) =0} = ¢/(4). Since EN(A) =
—f(A) = A(A), the result follows.

O

Corollary 3.2 (Poisson process on the half-line). A random process N : (2 — Zﬂf’ indexed by time t € Z 4 is
the counting process associated with a one-dimensional Poisson process S : QO — RN having intensity measure A iff

(a) Starting with No = 0, the process N; takes a non-negative integer value for all t € R,

(b) the increment Ny — Ny is surely nonnegative for any s > t;

(c) the increments Ny, Ny, — Ny,,...,Np, — Np, | are independent for any 0 < t; <tp <--- <t, 1 <ty
(d) the increment N5 — Ny is distributed as Poisson random variable with parameter A(t,s) for s > t.

The Poisson process is homogeneous with intensity A, iff in addition to conditions (a),(b),(c), the distribution of
the increment Niys — Ny depends on the value s € R4 but is independent of t € Ry. That, is the increments are
stationary.

Proof. We have already seen that definition of Poisson processes implies all four conditions. Conditions (a)
and (b) imply that N is a simple counting process on the half-line, condition (c) is the complete indepen-
dence property of the point process, and condition (d) provides the intensity measure. The result follows
from the equivalence iv_ in Theorem O



	Simple point processes
	Poisson point process
	Equivalent characterizations

