
Lecture-24: Poisson Point Processes

1 Simple point processes

Consider the d-dimensional Euclidean space Rd. The collection of Borel measurable subsets B(Rd) of the
above Euclidean space is generated by sets B(x)≜

{
y ∈ Rd : yi ⩽ xi

}
for x ∈ Rd.

Definition 1.1. A simple point process is a random countable collection of distinct points S : Ω → XN, such
that the distance ∥Sn∥ → ∞ as n → ∞.

Remark 1. Since S is a simple point process, each point Sn is unique. Therefore, we can identify S as a
random set of points in X and S ∩ A is the random set of points in A.
Remark 2. For any simple point process S, we have P({Sn = Sm for any n ̸= m}) = 0 and |S ∩ A| is finite
almost surely for any bounded set A ∈ B(X).

Example 1.2 (Simple point process on the half-line). We can simplify this definition for d = 1. When
X = R+, one can order the points of the process S : Ω → RN

+ to get ordered process S̃ : Ω → RN
+ , such that

S̃n = S(n) is the nth order statistics of S. That is, S(0) ≜ 0, and S(n) ≜ inf
{

Sk > S(n−1) : k ∈ N
}

. such that
S(1) < S(2) < · · · < S(n) < . . . , and limn∈N S(n) = ∞. We will call this an arrival process.

Definition 1.3. Corresponding to a point process S : Ω → XN, we denote the number of points in a set
A ∈ B(X) by

N(A)≜ |S ∩ A| = ∑
n∈N

1A(Sn), where we have N(∅) = 0.

The resulting process N : Ω → Z+
B(X) is called a counting process for the point process S : Ω → XN.

Remark 3. Let A ∈B(X)k be a bounded partition of B ∈B(X). From the disjointness of (A1, . . . , Ak), we have

N(B) = ∑
n∈N

1∪k
i=1 Ai

(Sn) = ∑
n∈N

k

∑
i=1

1Ai (Sn) =
k

∑
i=1

∑
n∈N

1Ai (Sn) =
k

∑
i=1

N(Ai).

Definition 1.4. A counting process is simple if the underlying point process is simple.

Remark 4. For a simple counting process N, we have N({x})⩽ 1 almost surely for all x ∈ X.

Remark 5. Let N : Ω → Z+
B(X) be the counting process for the point process S : Ω → XN.

i Note that the point process S and the counting process N carry the same information.

ii The distribution of point process S is completely characterized by the finite dimensional distributions
of random vectors (N(A1), . . . , N(Ak)) for any bounded sets A1, . . . , Ak ∈ B(X) and finite k ∈ N.

Example 1.5 (Simple point process on the half-line). Since the Borel measurable sets B(R+) are generated
by half-open intervals {(0, t] : t ∈ R+}, we denote the counting process by N : Ω → Z+

R+ , where Nt ≜
N(0, t] = ∑n∈N1{Sn∈(0,t]} is the number of points in the half-open interval (0, t]. For s < t, the number of
points in interval (s, t] is N(s, t] = N(0, t]− N(0, s] = Nt − Ns.
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Theorem 1.6 (Rényi). Distribution of a simple point process S : Ω → XN on a locally compact second countable
space X is completely determined by void probabilities (P{N(A) = 0} : A ∈ B(X)).

Proof. It suffices to show that the finite dimensional distributions of S on locally compact sets are character-
ized by void probabilities.

Step 1: We will show this by induction on the number of points k in a bounded set A ∈B. Let A1, . . . , Ak, B ∈
B(X) locally compact, then we will show that uk ≜ P(∩k

i=1 {N(Ai) > 0} ∩ {N(B) = 0}) can be com-
puted from void probabilities. From k = 1, we have

P{N(A1) > 0, N(B) = 0} = P{N(B) = 0} − P{N(B ∪ A1) = 0} .

The induction can be proved by the recursive relation

uk = P(∩k−1
i=1 {N(Ai) > 0} ∩ {N(B) = 0})− P(∩k−1

i=1 {N(Ai) > 0} ∩ {N(Ak ∪ B) = 0}).

Step 2: For any locally compact set B ∈ B(X), there exists a sequence of nested partitions Bn ≜ (Bn,j : j ∈
[Jn]) that eventually separates the points in S ∩ B as n → ∞. We define the number of subsets of
partition (Bn,j : j ∈ [Jn]) that consist of at least one point in S ∩ B, as Hn(B)≜ ∑Jn

j=11{N(Bn,j)>0} where

Hn(B) ↑ N(B) almost surely.

Step 3: We next show that for all locally compact sets B1, . . . , Bk ∈ B(X) and j1, . . . , jk ∈ N, the probability
P(∩k

i=1 {Hn(Bi) = ji}) can be expressed in terms of void probabilities. We observe that

P(∩k
i=1 {Hn(B) = ji}) = ∑

T1,...,Tk⊆[Jn ]:|T1|=j1,...,|Tk |=jk

P
(
∩k

i=1 ∩j∈Ti

{
N(Bi

n,j) > 0
}
∩
{

N(∪j/∈∪k
i=1Ti

Bi
n,j) = 0

})
.

This can be expressed in terms of void probabilities by Step 1.

Step 4: For a simple point process, we have the following almost sure limit limn ∩k
i=1 {Hn(Bi) = ji} =

∩k
i=1 {N(Bi) = ji}. The result follows from the continuity of probability.

Remark 6. Recall that |A| =
∫

x∈A dx is the volume of the set A ∈ B(Rd) and for any such A.

Definition 1.7. The intensity measure Λ : B(X)→ R+ is defined for each bounded set A ∈ X as its scaled
volume in terms of the intensity density λ : Rd → R+, as

Λ(A)≜
∫

x∈A
λ(x)dx.

If the intensity density λ(x) = λ for all x ∈ Rd, then Λ(A) = λ |A|. In particular for partition A1, . . . , Ak for
a set B, we have Λ(B) = ∑k

i=1 Λ(Ai).

2 Poisson point process

Definition 2.1. A non-negative integer valued random variable N : Ω → Z+ is called Poisson if for some
constant λ > 0, we have

P{N = n} = e−λ λn

n!
.

Remark 7. It is easy to check that EN = Var[N] = λ. Furthermore, the moment generating function MNt =

EetN = eλ(et−1) exists for all t ∈ R.

Corollary 2.2. A simple counting process N : Ω → Z
B(X)
+ has Poisson marginal distribution with intensity measure

Λ : B(X)→ R+ if and only if void probabilities are exponential with the same intensity measure Λ.
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Proof. It is clear that if the marginal distribution of the counting process N is Poisson with intensity measure
Λ, then the void probability P{N(A) = 0} = e−Λ(A) is exponential for any bounded set A ∈ B(X).

Conversely, we assume that the void probabilities are exponentially distributed with intensity mea-
sure Λ. It follows from the linearity of intensity measure that for any finite, bounded, and disjoint sets
B1, . . . , Bk ∈ B(X), we have

P(∩k
i=1 {N(Bi) = 0}) = P

{
N(∪k

i=1Bi) = 0
}
= e−Λ(∪k

i=1Bi) =
k

∏
i=1

e−Λ(Bi) =
k

∏
i=1

P{N(Bi) = 0} .

That is, the Bernoulli random vector (1{N(Bi)=0} : i ∈ [k]) is independent for any finite k ∈ N and bounded
disjoint B(X) measurable sets B1, . . . , Bk. Next we consider a set B ∈B(X) and a partition Bn ≜ (Bn,j : j ∈ [Jn])

of B such that Λ(Bn,j) =
Λ(B)

Jn
for all j ∈ [Jn]. It follows that Hn(B) ≜ ∑Jn

j=11{N(Bn,j)>0} is the sum of Jn

i.i.d. Bernoulli random variables with success probability pn ≜ 1 − e−Λ(B)/Jn , and hence has a Binomial
distribution with parameters (Jn, pn). Therefore,

P{Hn(B) = m} = e−Λ(B)

m!

(
Jn

m

)
(eΛ(B)/Jn pn)

m = e−Λ(B) Jn!
(Jn − m)!

(
eΛ(B)/Jn − 1

)m
.

Recall that Hn(B) ↑ N(B) as n → ∞ in the proof of Rényi’s Theorem, and limn→∞ Jn = ∞ and limn∈N

∣∣Bn,j
∣∣=

0. Thus, limn→∞
Jn !

(Jn−m)! (e
Λ(B)/Jn − 1)m = Λ(B)m. Taking limit n → ∞ on both sides of the above equation,

we get the result.

Definition 2.3. A counting process N : Ω → Z
B(X)
+ has the completely independence property, if for any

collection of finite disjoint and bounded sets A1, . . . , Ak ∈ B(X), the vector (N(A1), . . . , N(Ak)) : Ω → Zk
+ is

independent. That is,

P

(
k⋂

i=1
{N(Ai) = ni}

)
=

k

∏
i=1

P{N(Ai) = ni} , n ∈ Zk
+.

Definition 2.4. A simple point process S : Ω → XN is Poisson point process, if the associated counting
process N : Ω → Z

B(X)
+ has complete independence property and the marginal distributions are Poisson.

Definition 2.5. The intensity measure Λ : B(X) → R+ of Poisson process S is defined by Λ(A) ≜ EN(A)
for all bounded A ∈ B(X).

Remark 8. Recall that for any partition A ∈ B(X)k of a bounded set B ∈ B(X), we have N(B) = ∑k
i=1 N(Ai)

and therefore it follows from the linearity of expectations that Λ(B) = EN(B) = ∑k
i=1 EN(Ai) = ∑k

i=1 Λ(Ai).
Thus, this is a valid intensity measure.

Remark 9. For a Poisson process with intensity measure Λ, it follows from the definition that for any finite
k ∈ Z+, and bounded mutually disjoint sets A1, . . . , Ak ∈ B(X), we have

P
(
∩k

i=1 {N(Ai) = ni}
)
=

k

∏
i=1

(
e−Λ(Ai)

Λ(Ai)
ni

ni!

)
, n ∈ Zk

+.

Definition 2.6. If the intensity measure Λ of a Poisson process S satisfies Λ(A) = λ |A| for all bounded
A ∈ B(X), then we call S a homogeneous Poisson point process and λ is its intensity.

3 Equivalent characterizations

Theorem 3.1 (Equivalences). Following are equivalent for a simple counting process N : Ω → Z+
B(X).

i Process N is Poisson with locally finite intensity measure Λ.
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ii For each bounded A ∈ B(X), we have P{N(A) = 0} = e−Λ(A).

iii For each bounded A ∈ B(X), the number of points N(A) is a Poisson with parameter Λ(A).

iv Process N has the completely independence property, and EN(A) = Λ(A) for all bounded sets A ∈ B(X).

Proof. We will show that i =⇒ ii =⇒ iii =⇒ iv =⇒ i .

i =⇒ ii It follows from the definition of Poisson point processes and definition of Poisson random vari-
ables.

ii =⇒ iii From Corollary 2.2, we know that if void probabilities are exponential, then the marginal distri-
butions are Poisson.

iii =⇒ iv We will show this in two steps.

Mean: Since the distribution of random variable N(A) is Poisson, it has mean EN(A) = Λ(A).
CIP: Consider a partition A ∈ Bk for a bounded set B ∈ B(X), then Λ(B) = Λ(A1) + · · · + Λ(Ak).

Consider all partitions n ∈ Zk
+ of a non-negative integer m ∈ Z+, to write

P{N(B) = m} = ∑
n1+···+nk=m

P{N(A1) = n1, . . . , N(Ak) = nk} .

Using the definition of Poisson distribution, we can write the LHS of the above equation as

P{N(B) = m} = e−Λ(B) Λ(B)m

m!
=

k

∏
i=1

e−Λ(Ai)
(∑k

i=1 Λ(Ai))
m

m!
.

Since the expansion of (a1 + · · ·+ ak)
m = ∑n1+···+nk=m ( m

n1,...,nk
)∏k

i=1 ani
i , we get

P{N(B) = m}= 1
m! ∑

n1+···+nk=n

(
m

n1, . . . ,nk

) k

∏
i=1

e−Λ(Ai)Λ(Ai))
ni = ∑

n1+···+nk=m

(
k

∏
i=1

e−Λ(Ai)
Λ(Ai))

ni

ni!

)
.

Equating each term in the summation, we get P{N(A1) = n1, . . . , N(Ak) = nk}=∏k
i=1 P{N(Ai) = ni}.

iv =⇒ i From Corollary 2.2, if the void probability is exponential with intensity measure Λ, then the
marginal distribution if Poisson with the same intensity measure. We define f : B(X) → (−∞,0]
by f (A) ≜ ln P{N(A) = 0} for all bounded A ∈ B(X). Then, we observe that for any partition
(A1, . . . , Ak) of A, we have f (∪k

i=1 Ai) = ln P{N(A) = 0} = ln∏k
i=1 P{N(Ai) = 0} = ∑k

i=1 f (Ai). It
follows that − f : B(X) → R+ is an intensity measure, and P{N(A) = 0} = e f (A). Since EN(A) =
− f (A) = Λ(A), the result follows.

Corollary 3.2 (Poisson process on the half-line). A random process N : Ω → Z
R+
+ indexed by time t ∈ Z+ is

the counting process associated with a one-dimensional Poisson process S : Ω → RN
+ having intensity measure Λ iff

(a) Starting with N0 = 0, the process Nt takes a non-negative integer value for all t ∈ R+;

(b) the increment Ns − Nt is surely nonnegative for any s ⩾ t;

(c) the increments Nt1 , Nt2 − Nt1 , . . . , Ntn − Ntn−1 are independent for any 0 < t1 < t2 < · · · < tn−1 < tn;

(d) the increment Ns − Nt is distributed as Poisson random variable with parameter Λ(t, s] for s ⩾ t.

The Poisson process is homogeneous with intensity λ, iff in addition to conditions (a), (b), (c), the distribution of
the increment Nt+s − Nt depends on the value s ∈ R+ but is independent of t ∈ R+. That, is the increments are
stationary.

Proof. We have already seen that definition of Poisson processes implies all four conditions. Conditions (a)
and (b) imply that N is a simple counting process on the half-line, condition (c) is the complete indepen-
dence property of the point process, and condition (d) provides the intensity measure. The result follows
from the equivalence iv in Theorem 3.1.
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