Lecture-24: Poisson Point Processes

1 Simple point processes

Consider the *d*-dimensional Euclidean space \mathbb{R}^d . The collection of Borel measurable subsets $\mathcal{B}(\mathbb{R}^d)$ of the above Euclidean space is generated by sets $\mathcal{B}(x) \triangleq \{y \in \mathbb{R}^d : y_i \leq x_i\}$ for $x \in \mathbb{R}^d$.

Definition 1.1. A simple point process is a random countable collection of *distinct points* $S : \Omega \to X^{\mathbb{N}}$, such that the distance $||S_n|| \to \infty$ as $n \to \infty$.

Remark 1. Since *S* is a simple point process, each point S_n is unique. Therefore, we can identify *S* as a random set of points in \mathcal{X} and $S \cap A$ is the random set of points in *A*.

Remark 2. For any simple point process *S*, we have $P(\{S_n = S_m \text{ for any } n \neq m\}) = 0$ and $|S \cap A|$ is finite almost surely for any bounded set $A \in \mathcal{B}(\mathcal{X})$.

Example 1.2 (Simple point process on the half-line). We can simplify this definition for d = 1. When $\mathcal{X} = \mathbb{R}_+$, one can order the points of the process $S : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ to get ordered process $\tilde{S} : \Omega \to \mathbb{R}_+^{\mathbb{N}}$, such that $\tilde{S}_n = S_{(n)}$ is the *n*th order statistics of *S*. That is, $S_{(0)} \triangleq 0$, and $S_{(n)} \triangleq \inf \{S_k > S_{(n-1)} : k \in \mathbb{N}\}$. such that $S_{(1)} < S_{(2)} < \cdots < S_{(n)} < \ldots$, and $\lim_{n \in \mathbb{N}} S_{(n)} = \infty$. We will call this an arrival process.

Definition 1.3. Corresponding to a point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$, we denote the number of points in a set $A \in \mathcal{B}(\mathfrak{X})$ by

$$N(A) \triangleq |S \cap A| = \sum_{n \in \mathbb{N}} \mathbb{1}_A(S_n)$$
, where we have $N(\emptyset) = 0$.

The resulting process $N : \Omega \to \mathbb{Z}_+^{\mathcal{B}(\mathfrak{X})}$ is called a **counting process** for the point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$. *Remark* 3. Let $A \in \mathcal{B}(\mathfrak{X})^k$ be a bounded partition of $B \in \mathcal{B}(\mathfrak{X})$. From the disjointness of (A_1, \ldots, A_k) , we have

$$N(B) = \sum_{n \in \mathbb{N}} \mathbb{1}_{\bigcup_{i=1}^{k} A_{i}}(S_{n}) = \sum_{n \in \mathbb{N}} \sum_{i=1}^{k} \mathbb{1}_{A_{i}}(S_{n}) = \sum_{i=1}^{k} \sum_{n \in \mathbb{N}} \mathbb{1}_{A_{i}}(S_{n}) = \sum_{i=1}^{k} N(A_{i}).$$

Definition 1.4. A counting process is **simple** if the underlying point process is simple.

Remark 4. For a simple counting process *N*, we have $N({x}) \leq 1$ almost surely for all $x \in \mathcal{X}$.

Remark 5. Let $N : \Omega \to \mathbb{Z}_+^{\mathcal{B}(\mathfrak{X})}$ be the counting process for the point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$.

- i₋ Note that the point process *S* and the counting process *N* carry the same information.
- ii_− The distribution of point process *S* is completely characterized by the finite dimensional distributions of random vectors $(N(A_1),...,N(A_k))$ for any bounded sets $A_1,...,A_k \in \mathcal{B}(\mathcal{X})$ and finite $k \in \mathbb{N}$.

Example 1.5 (Simple point process on the half-line). Since the Borel measurable sets $\mathcal{B}(\mathbb{R}_+)$ are generated by half-open intervals $\{(0,t] : t \in \mathbb{R}_+\}$, we denote the counting process by $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$, where $N_t \triangleq N(0,t] = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{S_n \in (0,t]\}}$ is the number of points in the half-open interval (0,t]. For s < t, the number of points in interval (s,t] is $N(s,t] = N(0,t] - N(0,s] = N_t - N_s$.

Theorem 1.6 (Rényi). Distribution of a simple point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$ on a locally compact second countable space \mathfrak{X} is completely determined by void probabilities $(P\{N(A) = 0\} : A \in \mathcal{B}(\mathfrak{X}))$.

Proof. It suffices to show that the finite dimensional distributions of *S* on locally compact sets are characterized by void probabilities.

Step 1: We will show this by induction on the number of points *k* in a bounded set $A \in \mathcal{B}$. Let $A_1, \ldots, A_k, B \in \mathcal{B}(\mathcal{X})$ locally compact, then we will show that $u_k \triangleq P(\bigcap_{i=1}^k \{N(A_i) > 0\} \cap \{N(B) = 0\})$ can be computed from void probabilities. From k = 1, we have

$$P\{N(A_1) > 0, N(B) = 0\} = P\{N(B) = 0\} - P\{N(B \cup A_1) = 0\}$$

The induction can be proved by the recursive relation

$$u_k = P(\bigcap_{i=1}^{k-1} \{N(A_i) > 0\} \cap \{N(B) = 0\}) - P(\bigcap_{i=1}^{k-1} \{N(A_i) > 0\} \cap \{N(A_k \cup B) = 0\}).$$

- **Step 2:** For any locally compact set $B \in \mathcal{B}(\mathfrak{X})$, there exists a sequence of nested partitions $B_n \triangleq (B_{n,j} : j \in [J_n])$ that eventually separates the points in $S \cap B$ as $n \to \infty$. We define the number of subsets of partition $(B_{n,j} : j \in [J_n])$ that consist of at least one point in $S \cap B$, as $H_n(B) \triangleq \sum_{j=1}^{J_n} \mathbb{1}_{\{N(B_{n,j})>0\}}$ where $H_n(B) \uparrow N(B)$ almost surely.
- **Step 3:** We next show that for all locally compact sets $B_1, ..., B_k \in \mathcal{B}(\mathcal{X})$ and $j_1, ..., j_k \in \mathbb{N}$, the probability $P(\bigcap_{i=1}^k \{H_n(B_i) = j_i\})$ can be expressed in terms of void probabilities. We observe that

$$P(\cap_{i=1}^{k} \{H_{n}(B) = j_{i}\}) = \sum_{T_{1},...,T_{k} \subseteq [J_{n}]:|T_{1}| = j_{1},...,|T_{k}| = j_{k}} P\left(\bigcap_{i=1}^{k} \bigcap_{j \in T_{i}} \{N(B_{n,j}^{i}) > 0\} \cap \{N(\bigcup_{j \notin \bigcup_{i=1}^{k} T_{i}} B_{n,j}^{i}) = 0\}\right).$$

This can be expressed in terms of void probabilities by Step 1.

Step 4: For a simple point process, we have the following almost sure limit $\lim_{n} \bigcap_{i=1}^{k} \{H_n(B_i) = j_i\} = \bigcap_{i=1}^{k} \{N(B_i) = j_i\}$. The result follows from the continuity of probability.

Remark 6. Recall that $|A| = \int_{x \in A} dx$ is the volume of the set $A \in \mathcal{B}(\mathbb{R}^d)$ and for any such A.

Definition 1.7. The **intensity measure** $\Lambda : \mathcal{B}(\mathcal{X}) \to \mathbb{R}_+$ is defined for each bounded set $A \in \mathcal{X}$ as its scaled volume in terms of the **intensity density** $\lambda : \mathbb{R}^d \to \mathbb{R}_+$, as

$$\Lambda(A) \triangleq \int_{x \in A} \lambda(x) dx.$$

If the intensity density $\lambda(x) = \lambda$ for all $x \in \mathbb{R}^d$, then $\Lambda(A) = \lambda |A|$. In particular for partition A_1, \ldots, A_k for a set *B*, we have $\Lambda(B) = \sum_{i=1}^k \Lambda(A_i)$.

2 Poisson point process

Definition 2.1. A non-negative integer valued random variable $N : \Omega \to \mathbb{Z}_+$ is called **Poisson** if for some constant $\lambda > 0$, we have

$$P\{N=n\}=e^{-\lambda}\frac{\lambda^n}{n!}.$$

Remark 7. It is easy to check that $\mathbb{E}N = \text{Var}[N] = \lambda$. Furthermore, the moment generating function $M_{N_t} = \mathbb{E}e^{tN} = e^{\lambda(e^t-1)}$ exists for all $t \in \mathbb{R}$.

Corollary 2.2. A simple counting process $N : \Omega \to \mathbb{Z}_+^{\mathcal{B}(\mathcal{X})}$ has Poisson marginal distribution with intensity measure $\Lambda : \mathcal{B}(\mathcal{X}) \to \mathbb{R}_+$ if and only if void probabilities are exponential with the same intensity measure Λ .

Proof. It is clear that if the marginal distribution of the counting process *N* is Poisson with intensity measure Λ , then the void probability $P\{N(A) = 0\} = e^{-\Lambda(A)}$ is exponential for any bounded set $A \in \mathcal{B}(\mathcal{X})$.

Conversely, we assume that the void probabilities are exponentially distributed with intensity measure Λ . It follows from the linearity of intensity measure that for any finite, bounded, and disjoint sets $B_1, \ldots, B_k \in \mathcal{B}(\mathcal{X})$, we have

$$P(\bigcap_{i=1}^{k} \{N(B_i) = 0\}) = P\left\{N(\bigcup_{i=1}^{k} B_i) = 0\right\} = e^{-\Lambda(\bigcup_{i=1}^{k} B_i)} = \prod_{i=1}^{k} e^{-\Lambda(B_i)} = \prod_{i=1}^{k} P\{N(B_i) = 0\}.$$

That is, the Bernoulli random vector $(\mathbb{1}_{\{N(B_i)=0\}}: i \in [k])$ is independent for any finite $k \in \mathbb{N}$ and bounded disjoint $\mathcal{B}(\mathcal{X})$ measurable sets B_1, \ldots, B_k . Next we consider a set $B \in \mathcal{B}(\mathcal{X})$ and a partition $B_n \triangleq (B_{n,j}: j \in [J_n])$ of B such that $\Lambda(B_{n,j}) = \frac{\Lambda(B)}{J_n}$ for all $j \in [J_n]$. It follows that $H_n(B) \triangleq \sum_{j=1}^{J_n} \mathbb{1}_{\{N(B_{n,j})>0\}}$ is the sum of J_n *i.i.d.* Bernoulli random variables with success probability $p_n \triangleq 1 - e^{-\Lambda(B)/J_n}$, and hence has a Binomial distribution with parameters (J_n, p_n) . Therefore,

$$P\{H_n(B) = m\} = \frac{e^{-\Lambda(B)}}{m!} {J_n \choose m} (e^{\Lambda(B)/J_n} p_n)^m = e^{-\Lambda(B)} \frac{J_n!}{(J_n - m)!} (e^{\Lambda(B)/J_n} - 1)^m.$$

Recall that $H_n(B) \uparrow N(B)$ as $n \to \infty$ in the proof of Rényi's Theorem, and $\lim_{n\to\infty} J_n = \infty$ and $\lim_{n\in\mathbb{N}} |B_{n,j}| = 0$. Thus, $\lim_{n\to\infty} \frac{J_n!}{(J_n-m)!} (e^{\Lambda(B)/J_n} - 1)^m = \Lambda(B)^m$. Taking limit $n \to \infty$ on both sides of the above equation, we get the result.

Definition 2.3. A counting process $N : \Omega \to \mathbb{Z}^{\mathcal{B}(\mathcal{X})}_+$ has the **completely independence property**, if for any collection of finite disjoint and bounded sets $A_1, \ldots, A_k \in \mathcal{B}(\mathcal{X})$, the vector $(N(A_1), \ldots, N(A_k)) : \Omega \to \mathbb{Z}^k_+$ is independent. That is,

$$P\left(\bigcap_{i=1}^{k} \{N(A_i) = n_i\}\right) = \prod_{i=1}^{k} P\{N(A_i) = n_i\}, \quad n \in \mathbb{Z}_+^k.$$

Definition 2.4. A simple point process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$ is **Poisson point process**, if the associated counting process $N : \Omega \to \mathbb{Z}^{\mathcal{B}(\mathfrak{X})}_+$ has complete independence property and the marginal distributions are Poisson.

Definition 2.5. The intensity measure $\Lambda : \mathcal{B}(\mathcal{X}) \to \mathbb{R}_+$ of Poisson process *S* is defined by $\Lambda(A) \triangleq \mathbb{E}N(A)$ for all bounded $A \in \mathcal{B}(\mathcal{X})$.

Remark 8. Recall that for any partition $A \in \mathcal{B}(\mathcal{X})^k$ of a bounded set $B \in \mathcal{B}(\mathcal{X})$, we have $N(B) = \sum_{i=1}^k N(A_i)$ and therefore it follows from the linearity of expectations that $\Lambda(B) = \mathbb{E}N(B) = \sum_{i=1}^k \mathbb{E}N(A_i) = \sum_{i=1}^k \Lambda(A_i)$. Thus, this is a valid intensity measure.

Remark 9. For a Poisson process with intensity measure Λ , it follows from the definition that for any finite $k \in \mathbb{Z}_+$, and bounded mutually disjoint sets $A_1, \ldots, A_k \in \mathcal{B}(\mathcal{X})$, we have

$$P\left(\cap_{i=1}^{k} \{N(A_{i}) = n_{i}\}\right) = \prod_{i=1}^{k} \left(e^{-\Lambda(A_{i})} \frac{\Lambda(A_{i})^{n_{i}}}{n_{i}!}\right), \quad n \in \mathbb{Z}_{+}^{k}.$$

Definition 2.6. If the intensity measure Λ of a Poisson process *S* satisfies $\Lambda(A) = \lambda |A|$ for all bounded $A \in \mathcal{B}(\mathcal{X})$, then we call *S* a **homogeneous Poisson point process** and λ is its intensity.

3 Equivalent characterizations

Theorem 3.1 (Equivalences). Following are equivalent for a simple counting process $N : \Omega \to \mathbb{Z}_+^{\mathcal{B}(\mathcal{X})}$.

*i*_ *Process* N *is Poisson with locally finite intensity measure* Λ .

- *ii*₋ For each bounded $A \in \mathcal{B}(\mathfrak{X})$, we have $P\{N(A) = 0\} = e^{-\Lambda(A)}$.
- *iii*_ For each bounded $A \in \mathcal{B}(\mathfrak{X})$, the number of points N(A) is a Poisson with parameter $\Lambda(A)$.

 iv_{-} Process N has the completely independence property, and $\mathbb{E}N(A) = \Lambda(A)$ for all bounded sets $A \in \mathcal{B}(\mathfrak{X})$.

Proof. We will show that $i_{-} \Longrightarrow ii_{-} \Longrightarrow iii_{-} \Longrightarrow iv_{-} \Longrightarrow i_{-}$.

- $i \implies ii_-$ It follows from the definition of Poisson point processes and definition of Poisson random variables.
- $ii \implies iii_{-}$ From Corollary 2.2, we know that if void probabilities are exponential, then the marginal distributions are Poisson.
- $iii \implies iv_{-}$ We will show this in two steps.

Mean: Since the distribution of random variable N(A) is Poisson, it has mean $\mathbb{E}N(A) = \Lambda(A)$.

CIP: Consider a partition $A \in \mathbb{B}^k$ for a bounded set $B \in \mathcal{B}(\mathfrak{X})$, then $\Lambda(B) = \Lambda(A_1) + \cdots + \Lambda(A_k)$. Consider all partitions $n \in \mathbb{Z}_+^k$ of a non-negative integer $m \in \mathbb{Z}_+$, to write

$$P\{N(B) = m\} = \sum_{n_1 + \dots + n_k = m} P\{N(A_1) = n_1, \dots, N(A_k) = n_k\}$$

Using the definition of Poisson distribution, we can write the LHS of the above equation as

$$P\{N(B) = m\} = e^{-\Lambda(B)} \frac{\Lambda(B)^m}{m!} = \prod_{i=1}^k e^{-\Lambda(A_i)} \frac{(\sum_{i=1}^k \Lambda(A_i))^m}{m!}.$$

Since the expansion of $(a_1 + \dots + a_k)^m = \sum_{n_1 + \dots + n_k = m} {m \choose n_1, \dots, n_k} \prod_{i=1}^k a_i^{n_i}$, we get

$$P\{N(B) = m\} = \frac{1}{m!} \sum_{n_1 + \dots + n_k = n} \binom{m}{n_1, \dots, n_k} \prod_{i=1}^k e^{-\Lambda(A_i)} \Lambda(A_i)^{n_i} = \sum_{n_1 + \dots + n_k = m} \left(\prod_{i=1}^k e^{-\Lambda(A_i)} \frac{\Lambda(A_i)^{n_i}}{n_i!} \right)$$

Equating each term in the summation, we get $P\{N(A_1) = n_1, \dots, N(A_k) = n_k\} = \prod_{i=1}^k P\{N(A_i) = n_i\}.$

 $iv \implies i_{-}$ From Corollary 2.2, if the void probability is exponential with intensity measure Λ , then the marginal distribution if Poisson with the same intensity measure. We define $f : \mathcal{B}(\mathcal{X}) \to (-\infty, 0]$ by $f(A) \triangleq \ln P\{N(A) = 0\}$ for all bounded $A \in \mathcal{B}(\mathcal{X})$. Then, we observe that for any partition (A_1, \ldots, A_k) of A, we have $f(\cup_{i=1}^k A_i) = \ln P\{N(A) = 0\} = \ln \prod_{i=1}^k P\{N(A_i) = 0\} = \sum_{i=1}^k f(A_i)$. It follows that $-f : \mathcal{B}(\mathcal{X}) \to \mathbb{R}_+$ is an intensity measure, and $P\{N(A) = 0\} = e^{f(A)}$. Since $\mathbb{E}N(A) = -f(A) = \Lambda(A)$, the result follows.

Corollary 3.2 (Poisson process on the half-line). A random process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ indexed by time $t \in \mathbb{Z}_+$ is the counting process associated with a one-dimensional Poisson process $S : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ having intensity measure Λ iff

- (a) Starting with $N_0 = 0$, the process N_t takes a non-negative integer value for all $t \in \mathbb{R}_+$;
- (b) the increment $N_s N_t$ is surely nonnegative for any $s \ge t$;
- (c) the increments $N_{t_1}, N_{t_2} N_{t_1}, \dots, N_{t_n} N_{t_{n-1}}$ are independent for any $0 < t_1 < t_2 < \dots < t_{n-1} < t_n$;
- (d) the increment $N_s N_t$ is distributed as Poisson random variable with parameter $\Lambda(t,s)$ for $s \ge t$.

The Poisson process is homogeneous with intensity λ , iff in addition to conditions (a), (b), (c), the distribution of the increment $N_{t+s} - N_t$ depends on the value $s \in \mathbb{R}_+$ but is independent of $t \in \mathbb{R}_+$. That, is the increments are stationary.

Proof. We have already seen that definition of Poisson processes implies all four conditions. Conditions (*a*) and (*b*) imply that *N* is a simple counting process on the half-line, condition (*c*) is the complete independence property of the point process, and condition (*d*) provides the intensity measure. The result follows from the equivalence iv_{-} in Theorem 3.1.