
Lecture-26: Properties of Poisson point processes

1 Laplace functional

Let X = Rd be the d-dimensional Euclidean space. Recall that all the random points are unique for a
simple point process S : Ω → XN , and hence S can also be considered as a set of countable points in X.
Let N : Ω → Z

B(X)
+ be the counting process associated with the simple point process S.

Remark 1. We observe that dN(x) = 0 for all x /∈ S and dN(x) = δx1{x∈S}. Hence, for any Borel measur-
able function f : X→ R and bounded A ∈ B(X), we have

∫
x∈A f (x)dN(x) = ∑x∈S∩A f (x).

Definition 1.1. The Laplace functional LS : RX
+ → R+ of a point process S : Ω → XN and associated

counting process N : Ω → Z
B(X)
+ is defined for all non-negative Borel measurable function f : X→ R+

as

LS( f )≜ Eexp
(
−
∫

Rd
f (x)dN(x)

)
.

Remark 2. For a simple function f = ∑k
i=1 ti1Ai , we can write the Laplace functional as a function of the

vector (t1, t2, . . . , tk), LS( f ) = Eexp
(
−∑k

i=1 ti
∫

Ai
dN(x)

)
= Eexp

(
−∑k

i=1 ti N(Ai)
)

. We observe that
this is a joint Laplace transform of the random vector (N(A1), . . . , N(Ak)). This way, one can compute
all finite dimensional distribution of the counting process N.

Proposition 1.2. The Laplace functional of a Poisson point process S : Ω → XN with intensity measure Λ :
B(X)→ R+ evaluated at any non-negative Borel measurable function f : X→ R+, is

LS( f ) = exp
(
−
∫
X
(1 − e− f (x))dΛ(x)

)
.

Proof. For a bounded Borel measurable set A ∈ B(X), consider the truncated function g = f1A. Then,

LS(g) = Eexp(−
∫
X

g(x)dN(x)) = Eexp(−
∫

A
f (x)dN(x)).

Clearly dN(x) = δx1{x∈S} and hence we can write LS(g) = Eexp (−∑x∈S∩A f (x)). We know that the
probability of N(A) = |S ∩ A| = n points in set A is given by

P{N(A) = n} = e−Λ(A) Λ(A)n

n!
.

Given there are n points in set A, the density of n point locations are independent and given by

f
S1,...,Sn

∣∣ N(A)=n
(x1, . . . , xn) =

n

∏
i=1

(
dΛ(xi)

Λ(A)
1{xi∈A}

)
.

Hence, we can write the Laplace functional as

LS(g) = e−Λ(A) ∑
n∈Z+

Λ(A)n

n!

n

∏
i=1

∫
A

e− f (xi)
dΛ(xi)

Λ(A)
= exp

(
−
∫
X
(1 − e−g(x))dΛ(x)

)
.

Result follows from taking increasing sequences of sets Ak ↑X and monotone convergence theorem.
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1.1 Superposition of point processes

Definition 1.3. Let Sk : Ω →XN be a simple point process with intensity measures Λk : B(X)→ R+ and
counting process Nk : Ω → Z

B(X)
+ , for each k ∈ N. The superposition of point processes (Sk : k ∈ N) is

defined as a point process S ≜ ∪kSk.

Remark 3. The counting process associated with superposition point process S : Ω → XN is given by
N : Ω → Z

B(X)
+ defined by N ≜ ∑k Nk, and the intensity measure of point process S is given by Λ :

B(X)→ R+ defined by Λ = ∑k Λk from monotone convergence theorem.
Remark 4. The superposition process S is simple iff ∑k Nk is locally finite.

Theorem 1.4. The superposition of independent Poisson point processes (Sk : k ∈ N) with intensities (Λk : k ∈
N) is a Poisson point process with intensity measure ∑k Λk if and only if the latter is a locally finite measure.

Proof. Consider the superposition S = ∪kSk of independent Poisson point processes Sk ∈ X with inten-
sity measures Λk. We will prove just the sufficiency part this theorem. We assume that ∑k Λk is locally
finite measure. It is clear that N(A) = ∑k Nk(A) is finite by locally finite assumption, for all bounded
sets A ∈B(X). In particular, we have dN(x) = ∑k dNk(x) for all x ∈X. From the monotone convergence
theorem and the independence of counting processes, we have for a non-negative Borel measurable
function f : X→ R+,

LS( f ) = Eexp

(
−
∫
X

f (x)∑
k

dNk(x)

)
= ∏

k
LSk = exp

(
−
∫
X
(1 − e− f (x))∑

k
Λk(x)

)
.

1.2 Thinning of point processes

Definition 1.5. Consider a probability retention function p : X → [0,1] and an independent Bernoulli
point retention process Y : Ω → {0,1}X such that EY(x) = p(x) for all x ∈ X. The thinning of point
process S : Ω →XN with the probability retention function p : X→ [0,1] is a point process S(p) : Ω →XN

defined by
S(p) ≜ (Sn ∈ S : Y(Sn) = 1),

where Y(Sn) is an independent indicator for the retention of each point Sn and E[Y(Sn)
∣∣ Sn] = p(Sn).

Theorem 1.6. The thinning of a Poisson point process S : Ω → XN of intensity measure Λ : B(X) → R+

with the retention probability function p : X→ [0,1], yields a Poisson point process S(p) : Ω → XN of intensity
measure Λ(p) : B(X)→ R+ defined for all bounded A ∈ B(X) as Λ(p)(A)≜

∫
A p(x)dΛ(x).

Proof. Let A ∈B(X) be a bounded Boreal measurable set, and let f : X→ R+ be a non-negative function.
Let N(p) be the associated counting process to the thinned point process S(p). Hence, for any bounded
set A ∈ B(X), we have N(p)(A) = ∑x∈S∩A Y(x). That is, dN(p)(x) = δxY(x)1{x∈S}. Therefore, for
any non-negative function g(x) = f (x)1{x∈A}, we can write

∫
x∈X g(x)dN(p)(x) =

∫
x∈A f (x)dN(p)(x) =

∑x∈S∩A f (x)Y(x). We can write the Laplace functional of the thinned point process S(p) for the non-
negative function g(x) = f (x)1{x∈A}, as

LS(p)(g) = E

[
E[exp

(
−
∫

A
f (x)dNp(x)

)
| N(A)]

]
= ∑

n∈Z+

P{N(A) = n}
n

∏
i=1

E[− f (Si)Y(Si)| {Si ∈ A}].

The first equality follows from the definition of Laplace functional and taking nested expectations.
Second equality follows from the fact that the distribution of all points of a Poisson point process are
i.i.d. . Since Y is a Bernoulli process independent of the underlying process S with E[Y(Si)] = p(Si), we
get

E[e− f (Si)Y(Si) | {Si ∈ S ∩ A}] = E[e− f (Si)p(Si) + (1 − p(Si)) | {Si ∈ S ∩ A}].

From the distribution Λ′(x)
Λ(A)

for x ∈ S ∩ A for the Poisson point process S, we get

LS(p)(g) = e−Λ(A) ∑
n∈Z+

1
n!

(∫
A
(p(x)e− f (x) + (1 − p(x))dΛ(x)

)n
= exp

(
−
∫
X
(1 − e−g(x))p(x)dΛ(x)

)
.

Result follows from taking increasing sequences of sets Ak ↑X and monotone convergence theorem.
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