Lecture-26: Properties of Poisson point processes

1 Laplace functional

Let X = R be the d-dimensional Euclidean space. Recall that all the random points are unique for a
simple point process S : Q — XN, and hence S can also be considered as a set of countable points in X.

Let N: Q) — Zf(x) be the counting process associated with the simple point process S.

Remark 1. We observe that dN(x) =0 forall x ¢ S and dN(x) = 6x1,cs). Hence, for any Borel measur-
able function f : X — R and bounded A € B(X), we have [,_, f(x)dN(x) = Xyesna f(x).

Definition 1.1. The Laplace functional £5: RY — R of a point process S : QO — XN and associated

counting process N : () — Zf(x)

as

is defined for all non-negative Borel measurable function f : X — R

es(f) 2 Bexp (- [ FAN) ).

Remark 2. For a simple function f = Z{-‘Zl ti14,, we can write the Laplace functional as a function of the
vector (t1,t,...,t), Ls(f) = Eexp (—Zi?:l t; fA,dN(x)) = Eexp (—Ei?:l tiN(Ai)) . We observe that

this is a joint Laplace transform of the random vector (N(A;),...,N(Ag)). This way, one can compute
all finite dimensional distribution of the counting process N.

Proposition 1.2. The Laplace functional of a Poisson point process S : Q — XN with intensity measure A :
B(X) — Ry evaluated at any non-negative Borel measurable function f : X — Ry, is

es(f) =exp (- [ (1= Finw).
Proof. For a bounded Borel measurable set A € B(X), consider the truncated function g = f1,4. Then,

£5(g) = Bexp(— | g(x)aN(x)) = Eexp(— [ f(x)dN(x)).
Clearly dN(x) = 6x1ycs) and hence we can write £5(g) = Eexp (— Yyesna f(x)). We know that the
probability of N(A) = |S N A| = n points in set A is given by

P{N(A)=n} = e—A(A)%'

Given there are n points in set A, the density of n point locations are independent and given by

L dA(xl)
fslr---rsn | N(A):n(xl" . -/xi’l) = 1—! < A(A)]l{xleA}) .

=

Hence, we can write the Laplace functional as

_ AA)" L ~ () AA(X) -
£ = MA) — /e fla) Z2Z0 o —/ 1— e 80)dA(x) ).
5(9) TSI R e (- L JaA(x)

Result follows from taking increasing sequences of sets Ay T X and monotone convergence theorem. [



1.1 Superposition of point processes

Definition 1.3. Let S¥: O — XN be a simple point process with intensity measures Ay : B(X) — R and

(X)

counting process Nj : () — Zf , for each k € IN. The superposition of point processes (S : k € N) is

defined as a point process S £ U;SK.

Remark 3. The counting process associated with superposition point process S : QO — XN is given by
N:Q— Zf(x) defined by N £ Y, N, and the intensity measure of point process S is given by A :
B(X) — Ry defined by A =Y A¢ from monotone convergence theorem.
Remark 4. The superposition process S is simple iff ) ;. Ny is locally finite.

Theorem 1.4. The superposition of independent Poisson point processes (S* : k € IN) with intensities (A : k €
IN) is a Poisson point process with intensity measure Y . Ay if and only if the latter is a locally finite measure.

Proof. Consider the superposition S = U; S of independent Poisson point processes Sk € X with inten-
sity measures Ay. We will prove just the sufficiency part this theorem. We assume that ) ; A is locally
finite measure. It is clear that N(A) = Y, Ni(A) is finite by locally finite assumption, for all bounded
sets A € B(X). In particular, we have dN(x) = Y, dNi(x) for all x € X. From the monotone convergence
theorem and the independence of counting processes, we have for a non-negative Borel measurable
function f: X — Ry,

Cs(f) = Eexp (— /xf<x>;dwk<x>> =[Tts —ex (— J.a- ef<x>>ZAk<x>> .

k

1.2 Thinning of point processes

Definition 1.5. Consider a probability retention function p : X — [0,1] and an independent Bernoulli
point retention process Y : () — {0,1}* such that EY(x) = p(x) for all x € X. The thinning of point

process S : ) — XN with the probability retention function p : X — [0,1] is a point process S(#) : (0 — XN
defined by

S L (5, e5:Y(S,) =1),
where Y (S,,) is an independent indicator for the retention of each point S, and E[Y(S,) | Su] = p(Su).

Theorem 1.6. The thinning of a Poisson point process S : Q0 — XN of intensity measure A : B(X) — Ry
with the retention probability function p : X — [0,1], yields a Poisson point process S) : Q — XN of intensity
measure AP) : B(X) — Ry defined for all bounded A € B(X) as AP)(A) & Jap(x)dA(x).

Proof. Let A € B(X) be abounded Boreal measurable set, and let f : X — R be a non-negative function.
Let N(P) be the associated counting process to the thinned point process S(P). Hence, for any bounded
set A € B(X), we have NP)(A) = ¥ csna Y (x). That is, AN (x) = 0xY(x)1zes)- Therefore, for
any non-negative function g(x) = f(x)1yc4), we can write fxe.xg(x)dN(p)(x) = fxeAf(x)dN(p) (x) =
Yxesna f(¥)Y(x). We can write the Laplace functional of the thinned point process $(7) for the non-
negative function g(x) = f(x)]l{xeA}, as

L5 (9) = [Elewp (- [ FN7 () ) INCA))| = & PAN(A) = b TEI/ )] g5, A

nezZ

The first equality follows from the definition of Laplace functional and taking nested expectations.
Second equality follows from the fact that the distribution of all points of a Poisson point process are
iid. . Since Y is a Bernoulli process independent of the underlying process S with E[Y(S;)] = p(S;), we
get
Ele /S| {s; € sn A} =E[e /) p(S:) + (1 - p(5:)) [ {Si € SN A}].

A'(x)
A(A)
_ 1 _ " _

con(@) = MO T ([ e (1 pnan) ) —e (< [ 1= S Dpmne).

nez,

From the distribution for x € SN A for the Poisson point process S, we get

Result follows from taking increasing sequences of sets Ay T X and monotone convergence theorem. [



	Laplace functional
	Superposition of point processes
	Thinning of point processes


