Lecture-27: Poisson process on the half-line

1 Simple point processes on the half-line

A stochastic process defined on the half-line $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ is a **counting process** if

- 1. $N_0 = 0$, and
- 2. for each $\omega \in \Omega$, the sample path $N(\omega) : \mathbb{R}_+ \to \mathbb{Z}_+$ is non-decreasing, integer valued, and right continuous function of time $t \in \mathbb{R}_+$.

Each discontinuity of the sample path of the counting process can be thought of as a jump of the process, as shown in Figure 1. A simple counting process has the unit jump size almost surely. General point processes in higher dimension don't have any inter-arrival time interpretation.

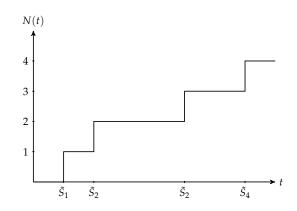


Figure 1: Sample path of a simple counting process.

Definition 1.1. The points of discontinuity are also called the **arrival instants** of the counting process *N*. The *n***th arrival instant** is a random variable denoted $\tilde{S}_n : \Omega \to \mathbb{R}_+$, defined inductively as

$$\tilde{S}_0 \triangleq 0,$$
 $\tilde{S}_n \triangleq \inf \{t \ge 0 : N_t \ge n\}, n \in \mathbb{N}$

Definition 1.2. The **inter arrival time** between (n - 1)th and *n*th arrival is denoted by X_n and written as $X_n \triangleq \tilde{S}_n - \tilde{S}_{n-1}$.

Remark 1. For a simple point process, we have $P\{X_n = 0\} = P\{X_n \le 0\} = 0$.

Lemma 1.3. Simple counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ and arrival process $\tilde{S} : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ are inverse processes, i.e.

$$\left\{\tilde{S}_n\leqslant t\right\}=\left\{N_t\geqslant n\right\}.$$

Proof. Let $\omega \in \{\tilde{S}_n \leq t\}$, then $N_{\tilde{S}_n} = n$ by definition. Since N is a non-decreasing process, we have $N_t \ge N_{\tilde{S}_n} = n$. Conversely, let $\omega \in \{N_t \ge n\}$, then it follows from definition that $\tilde{S}_n \leq t$.

Corollary 1.4. For arrival instants $\tilde{S} : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ associated with a counting process $N : \Omega \to \mathbb{Z}^{\mathbb{R}_+}_+$ we have $\{\tilde{S}_n \leq t, \tilde{S}_{n+1} > t\} = \{N_t = n\}$ for all $n \in \mathbb{Z}_+$ and $t \in \mathbb{R}_+$.

Proof. It is easy to see that $\{\tilde{S}_{n+1} > t\} = \{\tilde{S}_{n+1} \leqslant t\}^c = \{N_t \ge n+1\}^c = \{N_t < n+1\}$. Hence,

$$\{N_t = n\} = \{N_t \ge n, N_t < n+1\} = \{\tilde{S}_n \le t, \tilde{S}_{n+1} > t\}.$$

Lemma 1.5. Let $F_n(x)$ be the distribution function for S_n , then $P_n(t) \triangleq P\{N_t = n\} = F_n(t) - F_{n+1}(t)$.

Proof. It suffices to observe that following is a union of disjoint events,

$$\left\{\tilde{S}_n\leqslant t\right\}=\left\{\tilde{S}_n\leqslant t,\tilde{S}_{n+1}>t\right\}\cup\left\{\tilde{S}_n\leqslant t,\tilde{S}_{n+1}\leqslant t\right\}.$$

2 IID exponential inter-arrival times characterization

Proposition 2.1. The counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ associated with a simple Poisson point process $S : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ is Markov.

Proof. We define the event space $\mathcal{F}_t \triangleq \sigma(N_s : s \leq t)$ as the history of the process until time $t \in \mathbb{R}_+$. Then, from the independent increment property of Poisson processes, we have for any historical event $H_s \in \mathcal{F}_s$

$$P(\{N_t = n\} \mid H_s \cap \{N_s = k\}) = P(\{N_t - N_s = n - k\} \mid H_s \cap \{N_s = k\}) = P(\{N_t = n\} \mid \{N_s = k\}).$$

The transition probability matrix is P(s,t) with its (k,n)th entry given by $e^{-\Lambda(s,t]} \frac{(\Lambda(s,t))^{n-k}}{(n-k)!}$.

Remark 2. A Markov process $X : \Omega \to X^{\mathbb{R}}$ is time homogeneous if the transition matrix P(s,t) = P(t-s) for all $t \ge s$. Thus the counting process for a homogeneous Poisson point process is time homogeneous Markov process, as the transition probability matrix P(s,t) = P(t-s) with its (k,n)th entry given by $e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{n-k}}{(n-k)!}$.

Theorem 2.2. The counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ associated with a simple Poisson point process $S : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ is strongly Markov.

Proposition 2.3. A simple counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ is associated with a homogeneous Poisson process with a constant intensity density λ , iff the inter-arrival time sequence $X : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ are i.i.d. random variables with an exponential distribution of rate λ .

Proof. Let N_t be a counting process associated with a homogeneous Poisson point process on half-line with constant intensity density λ . From equivalence *iii*_ in Theorem **??**, we obtain for any positive integer *t*,

$$P\{X_1 > t\} = P\{N_t = 0\} = e^{-\lambda t}.$$

It suffices to show that inter-arrivals time sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ is *i.i.d.*. We can show that N is Markov process with strong Markov property. Since the sequence of ordered points $\tilde{S} : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ is a sequence of stopping times for the counting process, it follows from the strong Markov property of this process that $(N_{\tilde{S}_n+t} - N_{\tilde{S}_n} : t \ge 0)$ is independent of $\sigma(N_s : s \le \tilde{S}_n)$ and hence of \tilde{S}_n and $N_{\tilde{S}_n}$. Further, we see that

$$X_{n+1} = \inf \left\{ t > 0 : N_{\tilde{S}_n + t} - N_{\tilde{S}_n} = 1 \right\}.$$

It follows that $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ is an independent sequence. For homogeneous Poisson point process, we have $N_{\tilde{S}_n+t} - N_{\tilde{S}_n} = N_t$ in distribution, and hence X_{n+1} has same distribution as X_1 for each $n \in \mathbb{N}$.

For the given *i.i.d.* inter-arrival time sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ distributed exponentially with rate λ , we define the *n*th arrival instant $\tilde{S}_n \triangleq \sum_{i=1}^n X_i$ for each $n \in \mathbb{N}$, and the number of arrivals in time duration (0, t]

as $N_t \triangleq \sum_{n \in \mathbb{N}} \mathbb{1}_{\{\tilde{S}_n \leq t\}}$ for all $t \in \mathbb{R}_+$. It follows that N_t is path wise non-decreasing, integer-valued, right continuous, and simple since $P\{X_1 \leq 0\} = 0$. Therefore, N is a simple counting process such that

$$P\{N_t = 0\} = P\{X_1 > t\} = e^{-\lambda t}.$$

It follows that the void probabilities are exponential and hence the random variable N_t is Poisson with parameter λt for all $t \in \mathbb{R}_+$. Hence, N is a counting process associated with a homogeneous Poisson process with the constant intensity density λ from the equivalence ii_- in Theorem **??**.

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events $\{N_t = n\}$ for $n \in \mathbb{Z}_+$. We need the following lemma that enables us to do that.

Lemma 2.4. For any finite time t > 0, the number of points on the interval (0,t] from a Poisson process is finite almost surely.

Proof. By strong law of large numbers, we have $\lim_{n\to\infty} \frac{S_n}{n} = \mathbb{E}[X_1] = \frac{1}{\lambda}$ almost surely. Fix t > 0 and we define a sample space subset $M = \{\omega \in \Omega : N(\omega, t) = \infty\}$. For any $\omega \in M$, we have $S_n(\omega) \leq t$ for all $n \in \mathbb{N}$. This implies $\limsup_n \frac{S_n}{n} = 0$ and $\omega \notin \{\lim_n \frac{S_n}{n} = \frac{1}{\lambda}\}$. Hence, the probability measure for set M is zero. \Box

2.1 Distribution functions

Lemma 2.5. The following are true for the nth arrival instant \tilde{S}_n of the Poisson arrival process $\tilde{S} : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ with constant intensity density λ .

- (a) The moment generating function is $M_{\tilde{S}_n}(\theta) = \mathbb{E}[e^{\theta \tilde{S}_n}] = \frac{\lambda^n}{(\lambda-\theta)^n} \mathbb{1}_{\{\theta \geq \lambda\}} + \infty \mathbb{1}_{\{\theta \geq \lambda\}}.$
- (b) The distribution function is $F_n(t) \triangleq P\{\tilde{S}_n \leq t\} = 1 e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!}$.
- (c) The density function is Gamma distributed with parameters n and λ . That is, $f_n(s) = \frac{\lambda(\lambda s)^{n-1}}{(n-1)!}e^{-\lambda s}$.

Corollary 2.6. Consider the counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ associated with the Poisson arrival process $\tilde{S} : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ having constant intensity density λ . The following are true.

- (a) The relation between distribution of nth arrival instant and probability mass function for the counting process is given by $F_n(t) = \sum_{i \ge n} P_j(t)$.
- (b) For each $t \in \mathbb{R}_+$, the probability mass function $P_{N_t} \in \mathcal{M}(\mathbb{Z}_+)$ for discrete random variable $N_t : \Omega \to \mathbb{Z}_+$ is given by $P_n(t) \triangleq P_{N_t}(n) = P\{N_t = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$.
- (c) The relation between distribution of nth arrival instant and the mean of the counting process is given by $\sum_{n \in \mathbb{N}} F_n(t) = \mathbb{E}N_t$.
- (d) For each $t \in \mathbb{R}_+$, the mean $\mathbb{E}[N_t] = \lambda t$, explaining the rate parameter λ for the Poisson process.

Proof. We observe the inverse relationship $\{\tilde{S}_n \leq t\} = \{N_t \geq n\}$ for all $n \in \mathbb{Z}_+$ and $t \in \mathbb{R}_+$.

- (a) The result follows by taking the probability on both sides of the inverse relationship, to get $F_n(t) = P\{\tilde{S}_n \leq t\} = P\{N_t \geq n\} = \sum_{j \geq n} P\{N_t = j\} = \sum_{j \geq n} P_j(t)$.
- (b) The result follows from the explicit from for the distribution of \tilde{S}_n and recognizing that $P_n(t) = F_n(t) F_{n+1}(t)$.
- (c) The result from the following observation $\sum_{n \in \mathbb{N}} F_n(t) = \mathbb{E} \sum_{n \in \mathbb{N}} \mathbb{1}_{\{N_t \ge n\}} = \sum_{n \in \mathbb{N}} P\{N_t \ge n\} = \mathbb{E} N_t.$
- (d) The result follows by summing the distribution function of the *n*th arrivals, to get $\mathbb{E}N_t = \sum_{n \in \mathbb{N}} F_n(t) = e^{-\lambda t} \sum_{n \in \mathbb{N}} \sum_{k \ge n} \frac{(\lambda t)^k}{k!} = \lambda t e^{-\lambda t} \sum_{k \in \mathbb{N}} \frac{(\lambda t)^{k-1}}{(k-1)!} = \lambda t.$

Remark 3. A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift invariant. This is clear from looking at the first moment $\mathbb{E}N_t = \lambda t$, which is linearly increasing in time.