Lecture-27: Poisson process on the half-line

1 Simple point processes on the half-line

A stochastic process defined on the half-line N: () — ZE* is a counting process if
1. Ng =0, and

2. for each w € ), the sample path N(w) : R; — Z is non-decreasing, integer valued, and right con-
tinuous function of time f € R;..

Each discontinuity of the sample path of the counting process can be thought of as a jump of the process, as
shown in Figure[T] A simple counting process has the unit jump size almost surely. General point processes
in higher dimension don’t have any inter-arrival time interpretation.
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Figure 1: Sample path of a simple counting process.
Definition 1.1. The points of discontinuity are also called the arrival instants of the counting process N.
The nth arrival instant is a random variable denoted S, : 3 — R, defined inductively as
Sp20, Sp=inf{t>0:N;>n}, neN.

Definition 1.2. The inter arrival time between (n — 1)th and nth arrival is denoted by X, and written as

X, 28,-85,_1.

Remark 1. For a simple point process, we have P{X,, =0} = P{X,, <0} =0.

Lemma 1.3. Simple counting process N : () — ZH:+ and arrival process S : Q) — RY are inverse processes, i.e.
{Sn <t} ={Ni>=n}.

Proof. Let w € {S, <t}, then Ng = n by definition. Since N is a non-decreasing process, we have N; >
Ng = n. Conversely, let w € {N; > n}, then it follows from definition that 5, < t. 0O

Corollary 1.4. For arrival instants S : Q — RN associated with a counting process N : Q0 — ZE* we have
{Sn<t,Spi1 >t} ={Ni=n}foralln € Z  andt € Ry.



Proof. Itis easy to see that {S,11 >t} = {S,11 <t}" = {N; > n+1}°={N; <n+1}. Hence,

{Ny=n}={N;2n Ny <n+1}={S5,<t,5,41>t}.

O
Lemma 1.5. Let F,(x) be the distribution function for Sy, then Py (t) £p {Nt=n} =F,(t) — F41(f).
Proof. It suffices to observe that following is a union of disjoint events,
{Sn<t}={Sn <t,51 >t} U{Su <1501 <t}
O

2 IID exponential inter-arrival times characterization

Proposition 2.1. The counting process N : (3 — ZE* associated with a simple Poisson point process S : 0 — R
is Markov.

Proof. We define the event space J; = (N : s < t) as the history of the process until time t € R... Then,
from the independent increment property of Poisson processes, we have for any historical event Hs € J

P({N: =n} | HsN{N; =k}) = P({N; — Ny = n —k} | Hy " {Ns = k}) = P({N: = n} | {Ns =k}).

The transition probability matrix is P(s,t) with its (k,n)th entry given by e~/ (/] (At O

(n—k)!

Remark 2. A Markov process X : Q — XR is time homogeneous if the transition matrix P(s,t) = P(t — s)
for all t > s. Thus the counting process for a homogeneous Poisson point process is time homogeneous
Markov process, as the transition probability matrix P(s,t) = P(t —s) with its (k,n)th entry given by
o Alt—s) Alt=9))"*

(n—k)!

Theorem 2.2. The counting process N : () — Zﬂf' associated with a simple Poisson point process S : Q0 — R is
strongly Markov.

Proposition 2.3. A simple counting process N : () — ZE* is associated with a homogeneous Poisson process
with a constant intensity density A, iff the inter-arrival time sequence X : Q — RY are i.i.d. random variables with
an exponential distribution of rate A.

Proof. Let N; be a counting process associated with a homogeneous Poisson point process on half-line with
constant intensity density A. From equivalence iii_ in Theorem ??, we obtain for any positive integer f,

P{X; >t} =P{N; =0} =e M.

It suffices to show that inter-arrivals time sequence X : O — R is i.i.d. . We can show that N is Markov
process with strong Markov property. Since the sequence of ordered points S : Q — RY is a sequence of
stopping times for the counting process, it follows from the strong Markov property of this process that
(N§n+t —Ng :t> 0) is independent of (N : s < S) and hence of S, and Ns . Further, we see that

Xpi1 =inf{t>0:Ng ,~Ng =1}.

It follows that X : 3 — RY is an independent sequence. For homogeneous Poisson point process, we have
Ng .4 — Ng = Niin distribution, and hence X,,, 1 has same distribution as X; for each n € IN.

For the given i.i.d. inter-arrival time sequence X : 3 — R distributed exponentially with rate A, we
define the nth arrival instant S, 2 Y. 1 X; for each n € IN, and the number of arrivals in time duration (0, ¢]



as Nt =Y ,en 1 {S.<t} for all t € R,. It follows that N; is path wise non-decreasing, integer-valued, right

continuous, and simple since P{X; <0} = 0. Therefore, N is a simple counting process such that
P{N; =0} =P{X; >t} =e M.

It follows that the void probabilities are exponential and hence the random variable N; is Poisson with
parameter At forall f € R... Hence, N is a counting process associated with a homogeneous Poisson process
with the constant intensity density A from the equivalence ii_in Theorem ??. O

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events
{N; =n} for n € Z,. We need the following lemma that enables us to do that.

Lemma 2.4. For any finite time t > 0, the number of points on the interval (0,t] from a Poisson process is finite
almost surely.

Proof. By strong law of large numbers, we have lim,_,c 5% = E[X;] = 1 almost surely. Fix t > 0 and we
define a sample space subset M = {w € ) : N(w,t) = oo}. For any w € M, we have S, (w) < t foralln € N.

This implies limsup,, % =0and w ¢ {limn % =1 } Hence, the probability measure for set M is zero. [

2.1 Distribution functions

Lemma 2.5. The following are true for the nth arrival instant S, of the Poisson arrival process S : Q — RY with
constant intensity density A.

(a) The moment generating function is Mg (0) = E[ef5n] = (Aﬁin)nl{k;\} + 0ol gy

~ K
(b) The distribution function is F,(t) £ P{S, <t} =1—e MY/ "] (%) .

_ Mg

(c) The density function is Gamma distributed with parameters n and A. That is, f,(s) = (=T s,

e

Corollary 2.6. Consider the counting process N : () — ZE* associated with the Poisson arrival process S : ) — RY
having constant intensity density A. The following are true.

(a) The relation between distribution of nth arrival instant and probability mass function for the counting process is
given by Fy(t) = L~y Pi(t).

(b) For each t € Ry, the probability mass function Py, € M(Z.) for discrete random variable Ny : Q) — Z. is
given by Py(t) £ Py,(n) = P{N; =n)} = e’“%.

(c) The relation between distribution of nth arrival instant and the mean of the counting process is given by ", e Fu (1) =
EN;.

(d) Foreacht € Ry, the mean E[N;] = At, explaining the rate parameter A for the Poisson process.

Proof. We observe the inverse relationship {S, <t} = {N; >n} foralln € Z, and t € Ry.

(a) The result follows by taking the probability on both sides of the inverse relationship, to get F,(t) =
P{Su <t} =P{Ni = n} = Yoy P{N; = j} = Ljz By (1).

(b) The result follows from the explicit from for the distribution of S, and recognizing that P, () = F,(t) —
F n+1 (t) :

(c) The result from the following observation },en Fu(t) = EXyen Lin,>n) = Luen P{N: > n} = EN;.

(d) The result follows by summing the distribution function of the nth arrivals, to get EN; =}, Fu(t) =

- Atk _ Ap)k-1

O

Remark 3. A Poisson process is not a stationary process. That is, the finite dimensional distributions are not
shift invariant. This is clear from looking at the first moment EN; = At, which is linearly increasing in time.
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