
Lecture-27: Poisson process on the half-line

1 Simple point processes on the half-line

A stochastic process defined on the half-line N : Ω → Z
R+
+ is a counting process if

1. N0 = 0, and

2. for each ω ∈ Ω, the sample path N(ω) : R+ → Z+ is non-decreasing, integer valued, and right con-
tinuous function of time t ∈ R+.

Each discontinuity of the sample path of the counting process can be thought of as a jump of the process, as
shown in Figure 1. A simple counting process has the unit jump size almost surely. General point processes
in higher dimension don’t have any inter-arrival time interpretation.
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Figure 1: Sample path of a simple counting process.

Definition 1.1. The points of discontinuity are also called the arrival instants of the counting process N.
The nth arrival instant is a random variable denoted S̃n : Ω → R+, defined inductively as

S̃0 ≜ 0, S̃n ≜ inf{t ⩾ 0 : Nt ⩾ n} , n ∈ N.

Definition 1.2. The inter arrival time between (n − 1)th and nth arrival is denoted by Xn and written as
Xn ≜ S̃n − S̃n−1.

Remark 1. For a simple point process, we have P{Xn = 0} = P{Xn ⩽ 0} = 0.

Lemma 1.3. Simple counting process N : Ω → Z
R+
+ and arrival process S̃ : Ω → RN

+ are inverse processes, i.e.{
S̃n ⩽ t

}
= {Nt ⩾ n} .

Proof. Let ω ∈
{

S̃n ⩽ t
}

, then NS̃n
= n by definition. Since N is a non-decreasing process, we have Nt ⩾

NS̃n
= n. Conversely, let ω ∈ {Nt ⩾ n}, then it follows from definition that S̃n ⩽ t.

Corollary 1.4. For arrival instants S̃ : Ω → RN
+ associated with a counting process N : Ω → Z

R+
+ we have{

S̃n ⩽ t, S̃n+1 > t
}
= {Nt = n} for all n ∈ Z+ and t ∈ R+.
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Proof. It is easy to see that
{

S̃n+1 > t
}
=

{
S̃n+1 ⩽ t

}c
= {Nt ⩾ n + 1}c = {Nt < n + 1}. Hence,

{Nt = n} = {Nt ⩾ n, Nt < n + 1} =
{

S̃n ⩽ t, S̃n+1 > t
}

.

Lemma 1.5. Let Fn(x) be the distribution function for Sn, then Pn(t)≜ P{Nt = n} = Fn(t)− Fn+1(t).

Proof. It suffices to observe that following is a union of disjoint events,{
S̃n ⩽ t

}
=

{
S̃n ⩽ t, S̃n+1 > t

}
∪
{

S̃n ⩽ t, S̃n+1 ⩽ t
}

.

2 IID exponential inter-arrival times characterization

Proposition 2.1. The counting process N : Ω → Z
R+
+ associated with a simple Poisson point process S : Ω → RN

+
is Markov.

Proof. We define the event space Ft ≜ σ(Ns : s ⩽ t) as the history of the process until time t ∈ R+. Then,
from the independent increment property of Poisson processes, we have for any historical event Hs ∈ Fs

P({Nt = n}
∣∣ Hs ∩ {Ns = k}) = P({Nt − Ns = n − k}

∣∣ Hs ∩ {Ns = k}) = P({Nt = n}
∣∣ {Ns = k}).

The transition probability matrix is P(s, t) with its (k,n)th entry given by e−Λ(s,t] (Λ(s,t])n−k

(n−k)! .

Remark 2. A Markov process X : Ω → XR is time homogeneous if the transition matrix P(s, t) = P(t − s)
for all t ⩾ s. Thus the counting process for a homogeneous Poisson point process is time homogeneous
Markov process, as the transition probability matrix P(s, t) = P(t − s) with its (k,n)th entry given by

e−λ(t−s) (λ(t−s))n−k

(n−k)! .

Theorem 2.2. The counting process N : Ω → Z
R+
+ associated with a simple Poisson point process S : Ω → RN

+ is
strongly Markov.

Proposition 2.3. A simple counting process N : Ω → Z
R+
+ is associated with a homogeneous Poisson process

with a constant intensity density λ, iff the inter-arrival time sequence X : Ω → RN
+ are i.i.d. random variables with

an exponential distribution of rate λ.

Proof. Let Nt be a counting process associated with a homogeneous Poisson point process on half-line with
constant intensity density λ. From equivalence iii in Theorem ??, we obtain for any positive integer t,

P{X1 > t} = P{Nt = 0} = e−λt.

It suffices to show that inter-arrivals time sequence X : Ω → RN
+ is i.i.d. . We can show that N is Markov

process with strong Markov property. Since the sequence of ordered points S̃ : Ω → RN
+ is a sequence of

stopping times for the counting process, it follows from the strong Markov property of this process that
(NS̃n+t − NS̃n

: t ⩾ 0) is independent of σ(Ns : s ⩽ S̃n) and hence of S̃n and NS̃n
. Further, we see that

Xn+1 = inf
{

t > 0 : NS̃n+t − NS̃n
= 1

}
.

It follows that X : Ω → RN
+ is an independent sequence. For homogeneous Poisson point process, we have

NS̃n+t − NS̃n
= Nt in distribution, and hence Xn+1 has same distribution as X1 for each n ∈ N.

For the given i.i.d. inter-arrival time sequence X : Ω → RN
+ distributed exponentially with rate λ, we

define the nth arrival instant S̃n ≜ ∑n
i=1 Xi for each n ∈ N, and the number of arrivals in time duration (0, t]
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as Nt ≜ ∑n∈N1{S̃n⩽t} for all t ∈ R+. It follows that Nt is path wise non-decreasing, integer-valued, right

continuous, and simple since P{X1 ⩽ 0} = 0. Therefore, N is a simple counting process such that

P{Nt = 0} = P{X1 > t} = e−λt.

It follows that the void probabilities are exponential and hence the random variable Nt is Poisson with
parameter λt for all t ∈ R+. Hence, N is a counting process associated with a homogeneous Poisson process
with the constant intensity density λ from the equivalence ii in Theorem ??.

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events
{Nt = n} for n ∈ Z+. We need the following lemma that enables us to do that.

Lemma 2.4. For any finite time t > 0, the number of points on the interval (0, t] from a Poisson process is finite
almost surely.

Proof. By strong law of large numbers, we have limn→∞
Sn
n = E[X1] =

1
λ almost surely. Fix t > 0 and we

define a sample space subset M = {ω ∈ Ω : N(ω, t) = ∞}. For any ω ∈ M, we have Sn(ω)⩽ t for all n ∈ N.
This implies limsupn

Sn
n = 0 and ω ̸∈

{
limn

Sn
n = 1

λ

}
. Hence, the probability measure for set M is zero.

2.1 Distribution functions

Lemma 2.5. The following are true for the nth arrival instant S̃n of the Poisson arrival process S̃ : Ω → RN
+ with

constant intensity density λ.

(a) The moment generating function is MS̃n
(θ) = E[eθS̃n ] = λn

(λ−θ)n1{θ<λ} + ∞1{θ⩾λ}.

(b) The distribution function is Fn(t)≜ P
{

S̃n ⩽ t
}
= 1 − e−λt ∑n−1

k=0
(λt)k

k! .

(c) The density function is Gamma distributed with parameters n and λ. That is, fn(s) =
λ(λs)n−1

(n−1)! e−λs.

Corollary 2.6. Consider the counting process N : Ω → Z
R+
+ associated with the Poisson arrival process S̃ : Ω → RN

+
having constant intensity density λ. The following are true.

(a) The relation between distribution of nth arrival instant and probability mass function for the counting process is
given by Fn(t) = ∑j⩾n Pj(t).

(b) For each t ∈ R+, the probability mass function PNt ∈ M(Z+) for discrete random variable Nt : Ω → Z+ is
given by Pn(t)≜ PNt(n) = P{Nt = n)} = e−λt (λt)n

n! .

(c) The relation between distribution of nth arrival instant and the mean of the counting process is given by ∑n∈N Fn(t) =
ENt.

(d) For each t ∈ R+, the mean E[Nt] = λt, explaining the rate parameter λ for the Poisson process.

Proof. We observe the inverse relationship
{

S̃n ⩽ t
}
= {Nt ⩾ n} for all n ∈ Z+ and t ∈ R+.

(a) The result follows by taking the probability on both sides of the inverse relationship, to get Fn(t) =
P
{

S̃n ⩽ t
}
= P{Nt ⩾ n} = ∑j⩾n P{Nt = j} = ∑j⩾n Pj(t).

(b) The result follows from the explicit from for the distribution of S̃n and recognizing that Pn(t) = Fn(t)−
Fn+1(t).

(c) The result from the following observation ∑n∈N Fn(t) = E∑n∈N1{Nt⩾n} = ∑n∈N P{Nt ⩾ n} = ENt.

(d) The result follows by summing the distribution function of the nth arrivals, to get ENt = ∑n∈N Fn(t) =

e−λt ∑n∈N ∑k⩾n
(λt)k

k! = λte−λt ∑k∈N
(λt)k−1

(k−1)! = λt.

Remark 3. A Poisson process is not a stationary process. That is, the finite dimensional distributions are not
shift invariant. This is clear from looking at the first moment ENt = λt, which is linearly increasing in time.
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