
Lecture-28: Compound Poisson Processes

1 Compound Poisson process

Definition 1.1. A compound Poisson process is a real-valued right-continuous process Z : Ω → R
R+
+

with the following properties.

i Finitely many jumps: for all ω ∈ Ω, sample path t 7→ Zt(ω) has finitely many jumps in finite
intervals,

ii Independent increments: for all t, s ⩾ 0; increments Zt+s − Zt is independent of past Ft ≜ σ(Zu :
u ⩽ t),

iii Stationary increments: for all t, s ⩾ 0, distribution of Zt+s − Zt depends only on s and not on t.

Definition 1.2. For each ω ∈ Ω and n ∈ N, we can define time and size of nth jump

S̃0(ω) = 0, S̃n(ω) = inf
{

t > S̃n−1 : Zt(ω) ̸= ZS̃n−1
(ω)

}
Y0(ω) = 0, Yn(ω) = ZS̃n

(ω)− ZS̃n−1
(ω).

Remark 1. Recall that Fs = σ(Zu,u ∈ (0, s]) is the collection of historical events until time s associated
with the process Z. If S̃n is almost surely finite for all n ∈N, then the sequence of jump times S̃ : Ω →RN

+
is a sequence of stopping times with respect to the natural filtration F• of the process Z.

Remark 2. Let N : Ω → Z
R+
+ be the simple counting process associated with the number of jumps of

compound Poisson process Z in (0, t] defined by Nt ≜ ∑n∈N1{S̃n⩽t} for all t ∈ R+. Then, S̃n and Yn are

the respectively the arrival instant and the size of the nth jump, and we can write Zt = ∑Nt
i=1 Yi.

Proposition 1.3. A stochastic process Z : Ω → R
R+
+ is a compound Poisson process iff its jump times form a

Poisson process and the jump sizes form an i.i.d. random sequence independent of the jump times.

Proof. We will prove it in two steps.

Implication: Let Z be a compound Poisson process with the jump instant sequence S̃ : Ω → RN
+ and the

jump size sequence Y : Ω → RN
+ . We will show that the counting process N : Ω → Z

R+
+ is simple

and has stationary and independent increments and the jump size sequence Y is i.i.d. .

Independence of jumps and increments: From the definition of jump instant sequence S̃, it fol-
lows that the counting process N is adapted to the natural filtration F• of the compound
Poisson process Z. Since Zt+s − Zt = ∑Nt+s

i=Nt+1 Yi, and the compound Poisson processes have
independent increments, it follows that the increment (Nt+s − Nt : s ⩾ 0) and (YNt+j : j ∈ N)
are independent of the past Ft.

Stationarity: Let’s assume that step sizes are positive, then we have

S̃n = inf
{

t > S̃n−1 : Zt > ZS̃n−1

}
, and {Nt+s − Nt = 0} = {Zt+s − Zt = 0} .

From the stationarity of the increments it follows that the probability P{Nt+s − Nt = 0} is
independent of t and equal to e−λs for some λ ∈ R+. It follows that the counting process
N : Ω → Z

R+
+ has stationary increments and the associated jump sequence S̃ is homogeneous

Poisson with intensity density λ.

Strong Markovity: The compound Poisson process has the Markov property from stationary and
independent increment property. Further, since each sample path t 7→ Zt is right continuous,
the process satisfies the strong Markov property at each almost sure stopping time.
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Inter jump times i.i.d. : We will inductively show that S̃ : Ω →RN
+ is a stopping time sequence and

hence the inter jump times sequence X : Ω → RN
+ defined by Xn ≜ S̃n − S̃n−1 for each n ∈ N

is an i.i.d. sequence. From the exponential distribution of S̃1, it follows that it is almost surely
finite and hence a stopping time. From the stationary of increments of compound Poisson
process and the strong Markov property at stopping times S̃2 − S̃1 = S̃1 is independent of
FS̃1

and identical in distribution to S̃1. The result follows inductively.

Jump size i.i.d. : From strong Markov property of Z, the jump size Yn is independent of the past
FS̃n−1

= σ(Zu : u ⩽ S̃n−1) and from stationarity it is identically distributed to Y1 for each
n ∈ N. It follows that the jump size sequence Y is i.i.d. and independent of jump instant
sequence S̃.

Superposition: Similar arguments can be used to show for negative jump sizes. For real jump
sizes, we can form two independent Poisson processes with negative and positive jumps,
and the superposition of these two processes is Poisson.

Converse: Let X : Ω → RN
+ be an i.i.d. inter-jump sequence distributed exponentially with rate λ and

Y : Ω → RN be an i.i.d. jump size sequence independent of X. We can define the jump instant
sequence S̃ : Ω → RN

+ defined as S̃n ≜ ∑n
i=1 Xi for each n ∈ N, the counting process for the number

of jumps N : Ω → Z
R+
+ defined as Nt ≜ ∑n∈N1{S̃n⩽t} for each t ∈ R+, and the compound process

Z : Ω → RR+ defined as Zt ≜ ∑Nt
n=1 Yn for each t ∈ R+.

Finitely many jumps: Since Nt is finite for any finite t, it follows that the compound Poisson pro-
cess Z has finitely many jumps in finite intervals.

Independence of increments: For any finite n ∈ N and finite intervals Ii for i ∈ [n], we can write
Z(Ii) =∑

N(Ii)
k=1 Yik, where Yik denotes the kth jump size in the interval Ii. Since the independent

sequence (N(Ii) : i ∈ [n]) and Y : Ω → RN
+ are also mutually independent, it follows that Z(Ii)

are independent.

Stationarity of increments: Further, the stationarity of the increments of the compound process is
inferred from the distribution of Z(Ii), which is

P{Z(Ii)⩽ x} = ∑
m∈Z+

P{Z(Ii)⩽ x, N(Ii) = m} = ∑
m∈Z+

P

{
m

∑
k=1

Yik ⩽ x

}
P{N(Ii) = m} .

Example 1.4. Examples of compound Poisson processes.

• Arrival of customers in a store is a Poison process N. Each customer i spends an i.i.d. amount
Xi independent of the arrival process.

Y0 = 0, Yn =
n

∑
i=1

Xi, i ∈ [n].

Now define Zt ≜ YNt as the amount spent by the customers arriving until time t ∈ R+. Then
Z : Ω → R

R+
+ is a compound Poisson Process.

• Let the time between successive failures of a machine be independent and exponentially dis-
tributed. The cost of repair is i.i.d. random at each failure. Then the total cost of repair in a
certain time t is a compound Poisson Process.
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