Lecture-03: Conditional Expectation

1 Conditional expectation

Consider a probability space (Ω, \mathcal{F}, P) .

Definition 1.1. For a random variable *X*, the conditional distribution conditioned on an event $E \in \mathcal{F}$ is given by

$$F_{X|E}(x) \triangleq \frac{P(\{X \leq x\} \cap E)}{P(E)}.$$

Remark 1. We can verify that $F_{X \mid E} : \mathbb{R} \to [0, 1]$ is a distribution function for any $E \in \mathcal{F}$.

Definition 1.2. For any Borel measurable function $g : \mathbb{R} \to \mathbb{R}$ and a random variable $X : \Omega \to \mathbb{R}$ defined on the probability space (Ω, \mathcal{F}, P) , the conditional expectation of a random variable g(X) given an event *E* is given by

$$\mathbb{E}[g(X) \mid E] \triangleq \int_{x \in \mathbb{R}} g(x) dF_{X|E}(x).$$

Example 1.3. Consider two random variables *X*, *Y* defined on the same probability space (Ω, \mathcal{F}, P) with the joint distribution $F_{X,Y}(x,y) = P(\{X \leq x, Y \leq y\})$. For each $y \in \mathbb{R}$, we define event $G_y \triangleq Y^{-1}(-\infty, y] \in \mathcal{F}$ such that $F_Y(y) = P(G_y)$. Then, for each $y \in \mathbb{R}$ such that $P(G_y) > 0$, we can write the conditional distribution of *X* given the event G_y as

$$F_{X|G_y}(x) = \frac{F_{X,Y}(x,y)}{F_Y(y)}.$$

The conditional expectation of *X* given the event G_y is defined as

$$\mathbb{E}[X|G_y] = \int_{x \in \mathbb{R}} x dF_{X|G_y}(x) = \int_{x \in \mathbb{R}} x \frac{d_x F_{X,Y}(x,y)}{F_Y(y)}.$$

Example 1.4. Consider a random variable $X : \Omega \to \mathbb{R}$ and a simple random variable $Y : \Omega \to \mathcal{Y}$ defined on the same probability space. We observe that the conditional distribution of X given the nontrivial event $E_y = Y^{-1}\{y\}$ for $y \in \mathcal{Y}$ is $F_{X|E_y}(x) = \frac{P(\{X \le x, Y = y\})}{P(E_y)}$. Therefore, the conditional expectation of X given the event E_y is

$$\mathbb{E}[X \mid E_y] = \mathbb{E}[X \mid Y = y] = \int_{x \in \mathbb{R}} x dF_{X \mid E_y}(x) = \int_{x \in \mathbb{R}} x \int_{z=y} \frac{dF_{X,Y}(x,z)}{P(E_y)} = \frac{\mathbb{E}[X \mathbb{1}_{E_y}]}{P(E_y)}$$

Since $\mathbb{E}[X | E_y]$ is a scalar, we can write $\mathbb{E}[X \mathbb{1}_{E_y}] = \mathbb{E}[\mathbb{E}[X | E_y] \mathbb{1}_{E_y}]$.

Definition 1.5. Consider a random variable $X : \Omega \to \mathbb{R}$ defined on probability space (Ω, \mathcal{F}, P) , and an event subspace $\mathcal{E} \subseteq \mathcal{F}$. The **conditional expectation** of *X* given \mathcal{E} is denoted $\mathbb{E}[X|\mathcal{E}]$ and is a random variable $Z \triangleq \mathbb{E}[X|\mathcal{E}] : \Omega \to \mathbb{R}$ where

- 1_− **measurability:** For each $B \in \mathcal{B}(\mathbb{R})$, we have $Z^{-1}(B) \in \mathcal{E}$, and
- **2**₋ **orthogonality:** for each event $E \in \mathcal{E}$, we have $\mathbb{E}[X \mathbb{1}_E] = \mathbb{E}[Z \mathbb{1}_E]$, and
- 3₋ integrability: $\mathbb{E} |Z| < \infty$.

Proposition 1.6. Conditional expectation is unique almost surely.

Proof. Consider a random variable $X : \Omega \to \mathbb{R}$ defined on a probability space (Ω, \mathcal{F}, P) and a sub event space $\mathcal{E} \subseteq \mathcal{F}$. Let Z_1 and Z_2 be conditional expectations of X given \mathcal{E} . It suffices to show that $A_{\epsilon} \triangleq \{\omega \in \Omega : Z_1 - Z_2 > \epsilon\} \in \mathcal{E}$ and $B_{\epsilon} \triangleq \{\omega \in \Omega : Z_2 - Z_1 > \epsilon\} \in \mathcal{E}$ defined for each $\epsilon > 0$ has measure $P(A_{\epsilon}) = P(B_{\epsilon}) = 0$. From the definition of conditional expectation and linearity of expectation, we can write

$$0 \leqslant \epsilon P(A_{\epsilon}) < \mathbb{E}[(Z_1 - Z_2)\mathbb{1}_{A_{\epsilon}}] = \mathbb{E}[X\mathbb{1}_{A_{\epsilon}}] - \mathbb{E}[X\mathbb{1}_{A_{\epsilon}}] = 0$$

Similarly, we can show that $P(B_{\epsilon}) = 0$, and the result follows.

Remark 2. Any random variable $Z : \Omega \to \mathbb{R}$ that satisfies the measurability, orthogonality, and integrability, is the conditional expectation of *X* given the sub-event space \mathcal{E} from the a.s. uniqueness of conditional expectations.

Remark 3. Intuitively, we think of the event subspace \mathcal{E} as describing the information we have. For each $A \in \mathcal{E}$, we know whether or not A has occurred. The conditional expectation $\mathbb{E}[X|\mathcal{E}]$ is the "best guess" of the value of X given the information \mathcal{E} .

Definition 1.7. Consider a random variable $X : \Omega \to \mathbb{R}$ and a random vector $Y : \Omega \to \mathbb{R}^n$ defined on the same probability space (Ω, \mathcal{F}, P) . The conditional expectation of *X* given *Y* is defined as

$$\mathbb{E}[X \mid Y] \triangleq \mathbb{E}[X \mid \sigma(Y)].$$

Proposition 1.8. *For two random variables* $X, Y : \Omega \to \mathbb{R}$ *defined on the same probability space* (Ω, \mathcal{F}, P) *, the conditional expectation* $\mathbb{E}[X | Y]$ *is a function of* Y*.*

Proof. We denote the conditional expectation $\mathbb{E}[X | Y]$ by a $\sigma(Y)$ -measurable random variable $Z : \Omega \to \mathbb{R}$. It suffices to show that for any $y \in \mathbb{R}$, the conditional expectation $Z(\omega)$ remains constant on the set of outcomes $\omega \in Y^{-1}\{y\}$. First, we show that for any event $A \in \sigma(Y)$, either $Y^{-1}\{y\} \subseteq A$ or $A \cap Y^{-1}\{y\} = \emptyset$. This follows from the fact that either $y \in A$ or $y \notin A$. Next, we suppose that there exists a $y \in \mathbb{R}$ and $\omega_1, \omega_2 \in Y^{-1}\{y\}$ such that $Z(\omega_1) \neq Z(\omega_2)$. It follows that there exists an event $B \triangleq Z^{-1}\{Z(\omega_1)\} \in \sigma(Z)$ such that $\omega_1 \in B$ and $\omega_2 \notin B$. Since Z is $\sigma(Y)$ -measurable, it follows that $B \in \sigma(Z) \subseteq \sigma(Y)$. This leads to a contradiction.

Proposition 1.9. Let X, Y be random variables on the probability space (Ω, \mathcal{F}, P) such that $\mathbb{E} |X|, \mathbb{E} |Y| < \infty$. Let \mathcal{G} and \mathcal{H} be sub-event spaces of \mathcal{F} . Then

- 1. *linearity:* $\mathbb{E}[\alpha X + \beta Y \mid \mathcal{G}] = \alpha \mathbb{E}[X \mid \mathcal{G}] + \beta E[Y \mid \mathcal{G}], a.s.$
- 2. *monotonicity:* If $X \leq Y$ a.s., then $\mathbb{E}[X \mid \mathcal{G}] \leq E[Y \mid \mathcal{G}]$, a.s.
- 3. *identity:* If X is \mathfrak{G} -measurable and $\mathbb{E} |X| < \infty$, then $X = \mathbb{E}[X \mid \mathfrak{G}]$ a.s. In particular, $c = \mathbb{E}[c \mid \mathfrak{G}]$, for any constant $c \in \mathbb{R}$.
- 4. conditional Jensen's inequality: If $\psi : \mathbb{R} \to \mathbb{R}$ is convex and $\mathbb{E} |\psi(X)| < \infty$, then $\mathbb{E}[\psi(X) | \mathcal{G}] \ge \psi(\mathbb{E}[X | \mathcal{G}])$, a.s.
- 5. *pulling out what's known:* If Y is \mathcal{G} -measurable and $\mathbb{E}|XY| < \infty$, then $\mathbb{E}[XY \mid \mathcal{G}] = Y\mathbb{E}[X \mid \mathcal{G}]$, *a.s.*
- 6. L²-projection: If $\mathbb{E} |X|^2 < \infty$, then $\zeta^* = \mathbb{E}[X \mid \mathcal{G}]$ minimizes $\mathbb{E}[(X \zeta)^2]$ over all \mathcal{G} -measurable random variables ζ such that $\mathbb{E} |\zeta|^2 < \infty$.
- 7. *tower property:* If $\mathcal{H} \subseteq \mathcal{G}$, then $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}] = \mathbb{E}[X \mid \mathcal{H}]$, *a.s.*.
- 8. *irrelevance of independent information:* If \mathcal{H} *is independent of* $\sigma(\mathcal{G}, \sigma(X))$ *then*

$$\mathbb{E}[X|\sigma(\mathfrak{G},\mathcal{H})] = \mathbb{E}[X \mid \mathfrak{G}], a.s.$$

In particular, if X is independent of \mathcal{H} , then $\mathbb{E}[X \mid \mathcal{H}] = \mathbb{E}[X]$, a.s.

Proof. Let *X*, *Y* be random variables on the probability space (Ω, \mathcal{F}, P) such that $\mathbb{E} |X|, \mathbb{E} |Y| < \infty$. Let \mathcal{G} and \mathcal{H} be event spaces such that $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$.

1. **linearity:** Let $Z \triangleq \alpha \mathbb{E}[X \mid \mathcal{G}] + \beta \mathbb{E}[Y \mid \mathcal{G}]$, then since $\mathbb{E}[X \mid \mathcal{G}], \mathbb{E}[Y \in \mathcal{G}]$ are \mathcal{G} -measurable, it follows that their linear combination Z is also \mathcal{G} -measurable. The integrability follows from the following triangle inequality and the monotonicity of expectation

$$|Z| \leq |\alpha| |\mathbb{E}[X | \mathcal{G}]| + |\beta| |\mathbb{E}[Y | \mathcal{G}]|.$$

Further, for any event $F \in G$, from the linearity of expectation and definition of conditional expectation, we have

 $\mathbb{E}[Z\mathbb{1}_G] = \alpha \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_G] + \beta \mathbb{E}[\mathbb{E}[Y \mid \mathcal{G}]\mathbb{1}_G] = \mathbb{E}[(\alpha X + \beta Y)\mathbb{1}_G].$

2. **monotonicity:** Let $\epsilon > 0$ and define $A_{\epsilon} \triangleq \{\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[Y \mid \mathcal{G}] > \epsilon\} \in \mathcal{G}$. Then from the definition of conditional expectation, we have

$$0 \leq \mathbb{E}[(\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[Y \mid \mathcal{G}])\mathbb{1}_{A_{\mathcal{E}}}] = \mathbb{E}[(X - Y)\mathbb{1}_{A_{\mathcal{E}}}] \leq 0.$$

Thus, we obtain that $P(A_{\epsilon}) = 0$ for all $\epsilon > 0$. Taking limit $\epsilon \downarrow 0$, we get $0 = \lim_{\epsilon \downarrow 0} P(A_{\epsilon}) = P(\lim_{\epsilon \to 0} A_{\epsilon}) = P(A_0)$.

- 3. **identity:** It follows from the definition that *X* satisfies all three conditions for conditional expectation. The event space generated by any constant function is the trivial event space $\{\emptyset, \Omega\} \subseteq \mathcal{G}$ for any event space. Hence, $\mathbb{E}[c \mid \mathcal{G}] = c$.
- 4. **conditional Jensen's inequality:** We will use the fact that a convex function can always be represented by the supremum of a family of affine functions. Accordingly, we will assume for a convex function $\psi : \mathbb{R} \to \mathbb{R}$, we have linear functions $\phi_i : \mathbb{R} \to \mathbb{R}$ and constants $c_i \in \mathbb{R}$ for all $i \in I$ such that $\psi = \sup_{i \in I} (\phi_i + c_i)$.

For each $i \in I$, we have $\phi_i(\mathbb{E}[X \mid \mathcal{G}]) + c_i = \mathbb{E}[\phi_i(X) \mid \mathcal{G}] + c_i \leq \mathbb{E}[\psi(X) \mid \mathcal{G}]$ from the linearity and monotonicity of conditional expectation. It follows that

$$\psi(\mathbb{E}[X \mid \mathcal{G}]) = \sup_{i \in I} (\phi_i(\mathbb{E}[X \mid \mathcal{G}]) + c_i) \leq \mathbb{E}[\psi(X) \mid \mathcal{G}].$$

5. **pulling out what's known:** Let *Y* be *G*-measurable and $\mathbb{E}|XY| < \infty$. Since *Y* is given to be *G*-measurable, conditional expectation $\mathbb{E}[X \mid G]$ is *G*-measurable by definition, and product function is Borel measurable, it follows that $Y\mathbb{E}[X \mid G]$ is *G*-measurable.

It suffices to show that $\mathbb{E}[XY\mathbb{1}_G] = \mathbb{E}[Y\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_G]$ for all events $G \in \mathcal{G}$ and $\mathbb{E}[Y\mathbb{E}[X \mid \mathcal{G}]| < \infty$, when Y is a simple \mathcal{G} -measurable random variable such that $\mathbb{E}[XY| < \infty$. It follows that, we can write $Y = \sum_{y \in \mathcal{Y}} y \mathbb{1}_{E_y}$ for finite \mathcal{Y} and $E_y \triangleq Y^{-1}\{y\} \in \mathcal{G}$ for all $y \in \mathcal{Y}$. From the definition of conditional expectation and linearity, we obtain for any $G \in \mathcal{G}$

$$\mathbb{E}[Y\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_G] = \sum_{y \in \mathcal{Y}} y\mathbb{E}[\mathbb{1}_{G \cap E_y}\mathbb{E}[X \mid \mathcal{G}]] = \sum_{y \in \mathcal{Y}} y\mathbb{E}[X\mathbb{1}_{G \cap E_y}] = \mathbb{E}[X\sum_{y \in \mathcal{Y}} y\mathbb{1}_{G \cap E_y}] = \mathbb{E}[XY\mathbb{1}_G].$$

Conditional Jensen's inequality applied to convex function $||: \mathbb{R} \to \mathbb{R}_+$, we get $|\mathbb{E}[X \mid \mathcal{G}]| \leq \mathbb{E}[|X| \mid \mathcal{G}]$. Therefore,

$$\mathbb{E}[|Y| |\mathbb{E}[X | \mathcal{G}]|] = \sum_{y \in \mathcal{Y}} |y| \mathbb{E}[|\mathbb{E}[X | \mathcal{G}]| \mathbb{1}_{E_y}] \leq \sum_{y \in \mathcal{Y}} |y| \mathbb{E}[|X| \mathbb{1}_{E_y}] = \mathbb{E}|XY|.$$

6. L²-projection: We define L²(𝔅) ≜ {ζ a 𝔅 measurable random variable : 𝔼ζ² < ∞}. From the conditional Jensen's inequality applied to convex function ()² : 𝔅 → 𝔅₊, we get that 𝔅(𝔅[𝑋 |𝔅])² ≤ 𝔅[𝑋² | 𝔅]. Since 𝑋 ∈ L², it follows that 𝑋² ∈ L¹ and hence 𝔅[𝑋 |𝔅] ∈ L². It follows that ζ^{*} ≜ 𝔅[𝑋 |𝔅] ∈ L²(𝔅) from the definition of conditional expectation.

We first show that $X - \zeta^*$ is uncorrelated with all $\zeta \in L^2(\mathcal{G})$. Towards this end, we let $\zeta \in L^2(\mathcal{G})$ and observe that

$$\mathbb{E}[(X - \zeta^*)\zeta] = \mathbb{E}[\zeta X] - \mathbb{E}[\zeta \mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[\zeta X] - \mathbb{E}[\mathbb{E}[\zeta X \mid \mathcal{G}]] = 0$$

The above equality follows from the linearity of expectation, the \mathfrak{G} -measurability of ζ , and the definition of conditional expectation. Since $\zeta^* \in L^2(\mathfrak{G})$, we have $(\zeta - \zeta^*) \in L^2(\mathfrak{G})$. Therefore, $\mathbb{E}[(X - \zeta^*)(\zeta - \zeta^*)] = 0$. For any $\zeta \in L^2(\mathfrak{G})$, we can write from the linearity of expectation

$$\mathbb{E}(X-\zeta)^2 = \mathbb{E}(X-\zeta^*)^2 + \mathbb{E}(\zeta-\zeta^*)^2 - 2\mathbb{E}(X-\zeta^*)(\zeta-\zeta^*) \ge \mathbb{E}(X-\zeta^*)^2.$$

7. **tower property:** Measurability follows from the definition of conditional expectation, since $\mathbb{E}[X | \mathcal{H}]$ is \mathcal{H} measurable. Integrability follows from the application of conditional Jensen's inequality to convex function $||: \mathbb{R} \to \mathbb{R}_+$ to get $|\mathbb{E}[X | \mathcal{H}]| \leq \mathbb{E}[|X| | \mathcal{H}]$, which implies $\mathbb{E}[\mathbb{E}[X | \mathcal{H}]] \leq \mathbb{E}[X| < \infty$. Orthogonality follows from the definition of conditional expectation, since for any $H \in \mathcal{H} \subseteq \mathcal{G}$, we have

$$\mathbb{E}[\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}] \mathbb{1}_{H}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mathbb{1}_{H}] = \mathbb{E}[X \mathbb{1}_{H}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{H}] \mathbb{1}_{H}]$$

8. irrelevance of independent information: Measurability follows from the definition of conditional expectation and the definition of *σ*(*𝔅*, *𝔅*). Since 𝔼[*X* | *𝔅*] is *𝔅*-measurable, it is *σ*(*𝔅*, *𝔅*) measurable. Integrability follows from the conditional Jensen's inequality applied to convex function || : ℝ → ℝ₊ to get |𝔼[*X* | *𝔅*]| ≤ 𝔼[*X* | *𝔅*], which implies that 𝔼 |𝔅[*X* | *𝔅*]| ≤ 𝔼[*X* | *𝔅*].

Orthogonality follows from the fact that it suffices to show for events $A = G \cap H \in \sigma(\mathcal{G}, \mathcal{H})$ where $G \in \mathcal{G}$ and $H \in \mathcal{H}$. In this case,

$$\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_{G \cap H}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_{G}\mathbb{1}_{H}] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]\mathbb{1}_{G}]\mathbb{E}[\mathbb{1}_{H}] = \mathbb{E}[X\mathbb{1}_{G}]\mathbb{E}[\mathbb{1}_{H}] = \mathbb{E}[X\mathbb{1}_{G \cap H}].$$

Example 1.10 (Conditioning on simple random variables). Let *X* and *Y* be random variables defined on the probability space (Ω, \mathcal{F}, P) , where $Y = \sum_{y \in \mathcal{Y}} y \mathbb{1}_{E_y}$ is simple with finite $\mathcal{Y}, E_y \triangleq Y^{-1} \{y\} \in \mathcal{F}$ for all $y \in \mathcal{Y}$ are mutually disjoint, and $p_y \triangleq P(E_y) > 0$ for all $y \in \mathcal{Y}$. Then, we observe that

$$\mathbb{E}[X|Y] = \sum_{y \in \mathcal{Y}} \mathbb{E}[X \mid E_y] \mathbb{1}_{E_y} ext{ a.s.}$$

To show this, we will use the almost sure uniqueness of conditional expectation that satisfies three properties in the definition. For measurability, we observe that $\sigma(Y) = \sigma(E_y : y \in \mathcal{Y})$, and RHS is a simple $\sigma(Y)$ -measurable random variable. For integrability, we observe that

$$\mathbb{E}\left|\sum_{y\in\mathcal{Y}}\mathbb{E}[X\mid E_y]\mathbb{1}_{E_y}\right| \leqslant \sum_{y\in\mathcal{Y}}|E[X\mid Y]|P(E_y).$$

Thus, integrability follows from the finiteness of $|\mathbb{E}[X | E_y]|$. For orthogonality, we observe that any $G \in \sigma(Y) = \bigcup_{y \in F} E_y$ for some finite subset $F \subseteq \mathcal{Y}$. Further, we observe that $\mathbb{E}[X \mathbb{1}_{E_y}] = \mathbb{E}[X | E_y]P(E_y)$. Therefore, we have

$$\mathbb{E}\left[\sum_{z\in F}\sum_{y\in\mathcal{Y}}\mathbb{E}[X\mid E_y]\mathbb{1}_{E_y}\mathbb{1}_{E_z}\right] = \mathbb{E}\left[\sum_{z\in F}\mathbb{E}[X\mid E_z]\mathbb{1}_{E_z}\right] = \mathbb{E}[X\mathbb{1}_G].$$

Example 1.11 (Conditioning on simple random variables). Consider two random variables *X*, *Y* defined on the same probability space (Ω, \mathcal{F}, P) , where *Y* is a simple random variable such that $\mathcal{Y} \subseteq \mathbb{R}$ is finite alphabet, $E_y \triangleq Y^{-1}(\{y\}) \in \sigma(Y) \subseteq \mathcal{F}$, and $p_y \triangleq P(E_y) > 0$. Thus, we can write

$$Y = \sum_{y \in \mathcal{Y}} y \mathbb{1}_{E_y}.$$

The collection $(E_y \in \mathcal{F} : y \in \mathcal{Y})$ forms a finite partition of the outcome space Ω and generates $\sigma(Y) = \{ \cup_{y \in F} E_y \in \mathcal{F} : F \subseteq \mathcal{Y} \}$. For an event space $\mathcal{E} \subseteq \mathcal{F}$, we claim

$$\mathbb{E}[X \mid \sigma(\mathcal{E}, Y)] = \sum_{y \in \mathcal{Y}} \mathbb{E}[X \mid \sigma(\mathcal{E}, E_y)] \mathbb{1}_{E_y} \text{ a.s.}$$

We will show this by uniqueness of conditional expectation that satisfies the following three properties. First, we verify that RHS is $\sigma(\mathcal{E}, Y)$ measurable, which follows from the definition since $\mathbb{E}[X | \sigma(\mathcal{E}, E_y)] \in \sigma(\mathcal{E}, F_y) \subseteq \sigma(\mathcal{E}, Y)$. Second, it follows from the triangular and conditional Jensen's inequality, that

$$\mathbb{E}\left|\sum_{y\in\mathcal{Y}}\mathbb{E}[X \mid \sigma(\mathcal{E}, E_y)]\mathbb{1}_{E_y}\right| \leqslant \sum_{y\in\mathcal{Y}}\mathbb{E}[\mathbb{E}[|X| \mid \mathbb{1}_{E_y} \mid \sigma(\mathcal{E}, E_y)]] \leqslant \mathbb{E}|X|.$$

It suffices to show that for any $A \in \mathcal{E}$, we have $\mathbb{E}[\sum_{y \in \mathcal{Y}} \mathbb{E}[X \mid \sigma(\mathcal{E}, E_y)] \mathbb{1}_{E_y} \mathbb{1}_A \mathbb{1}_{E_z}] = \mathbb{E}[X \mathbb{1}_A \mathbb{1}_{E_z}]$. To this end, we observe that LHS of above equation is equal to

$$\mathbb{E}[\mathbb{E}[X\mathbb{1}_{A\cap E_z} \mid \sigma(\mathcal{E}, E_z)]] = \mathbb{E}[X\mathbb{1}_{A\cap E_z}]$$